
CV2EC: Getting the Best of Both Worlds
Bruno Blanchet∗, Pierre Boutry†, Christian Doczkal‡, Benjamin Grégoire†, Pierre-Yves Strub§

∗Inria, F-75012 Paris, France
bruno.blanchet@inria.fr

†Université Côte d’Azur, Inria, F-06902 Sophia Antipolis, France
pierre.boutry@inria.fr,benjamin.gregoire@inria.fr

‡Max Planck Institute for Security and Privacy, D-44799 Bochum, Germany
christian.doczkal@mpi-sp.org

§PQShield, F-75012 Paris, France
pierre-yves@strub.nu

Abstract—We define and implement CV2EC, a translation
from CryptoVerif assumptions on primitives to EasyCrypt games.
CryptoVerif and EasyCrypt are two proof tools for mechanizing
game-based proofs. While CryptoVerif is primarily suited for
verifying security protocols, EasyCrypt has the expressive power
for verifying cryptographic primitives and schemes. CV2EC
allows us to prove security protocols in CryptoVerif and then
use EasyCrypt to prove the assumptions made in CryptoVerif,
either directly or by reducing them to lower-level or more
standard cryptographic assumptions. We apply this approach to
several case studies: we prove the multikey computational and
gap Diffie-Hellman assumptions used in CryptoVerif from the
standard version of these assumptions; we also prove an n-user
security property of authenticated key encapsulation mechanisms
(KEMs), used in the CryptoVerif study of hybrid public-key
encryption (HPKE), from the 2-user version. By doing that, we
discovered errors in the paper proof of this property, which we
reported to the authors who then fixed their proof.

Index Terms—security protocols, computational model, mech-
anized proofs, combining tools

I. INTRODUCTION

After three decades of active research on the verification of
security protocols, there now exists a plethora of tools in this
area. The first tools relied on the symbolic model of cryptogra-
phy, also called Dolev-Yao model [17], in which cryptographic
primitives are considered as ideal blackboxes, the messages
are terms on these primitives, and the adversary is restricted
to apply only these primitives. ProVerif [11] and Tamarin [26]
are two widely-used tools based on this approach. Later, tools
were developed that rely on the computational model of cryp-
tography, the model used by cryptographers in their (manual)
proofs. This model is more realistic than the symbolic model:
messages are bit strings, cryptographic primitives are functions
from bit strings to bit strings, and the adversary is any prob-
abilistic Turing machine. Proofs in this model are formalized
as sequences of cryptographic games [8], [27]. Several tools
rely on this model: CryptoVerif [9], EasyCrypt [5], FCF [24],
CryptHOL [6], Squirrel [3], OWL [19].

Each of these tools has its own strengths and limitations. For
instance, symbolic tools are usually highly automated and may
even find attacks against insecure protocols. However, these
tools are usually not sound in the computational model. Tools
based on the computational model provide stronger guarantees

than those obtained by symbolic tools, because they consider
a stronger adversary. Among computational tools, CryptoVerif
provides a high degree of automation; in particular, it generates
the cryptographic games. On the other hand, EasyCrypt,
FCF, and CryptHOL provide the expressive power to support
general mathematical reasoning. This comes at the cost of
providing less automation and making things explicit that are
implicit in CryptoVerif: the user has to give the games and
guide proofs of indistinguishability between games. Squirrel
relies on a logic that allows it to use symbolic techniques
and be computationally sound. Still, it currently proves a
security notion weaker than the standard one: the number of
sessions of the protocol must be bounded independently of
the security parameter (instead of being polynomial in the
security parameter). OWL relies on typing and offers a high
automation level but it is more limited in terms primitives that
it can support. Therefore, no single tool solves all problems of
security protocol verification, and we believe that one should
combine tools in order to get the best result.

In this paper, we combine EasyCrypt and CryptoVerif.
Thanks to its support for general purpose mathematical reason-
ing, EasyCrypt is particularly suited for proving cryptographic
schemes, but using it for proving large security protocols
becomes more tedious because the user has to write many large
cryptographic games. In contrast, CryptoVerif is primarily
suited for proving protocols, because of its higher level of
automation but more limited cryptographic reasoning. Cryp-
toVerif requires assumptions on primitives to be given in the
form of indistinguishability axioms between two cryptographic
games. Moreover, these axioms sometimes differ from the
standard way in which cryptographers present the considered
assumptions. For instance, CryptoVerif sometimes requires the
assumptions to be expressed for n keys, while the standard
way of writing it is for a single key. Therefore, our goal is to
use CryptoVerif to prove properties of security protocols from
assumptions on primitives, and use EasyCrypt to prove these
assumptions directly or from lower-level or more standard
cryptographic assumptions.

In order to achieve this goal, we define and implement
an automatic translation from CryptoVerif assumptions on
primitives into EasyCrypt games. This translation encodes

bruno.blanchet@inria.fr
pierre.boutry@inria.fr, benjamin.gregoire@inria.fr
christian.doczkal@mpi-sp.org
pierre-yves@strub.nu

the semantics of CryptoVerif assumptions in EasyCrypt. We
can then reason in EasyCrypt on the output of the translation
and prove the assumptions expected by CryptoVerif. Even
though both tools were developed to mechanize game-based
proofs, they are still very different. The CryptoVerif language
defines a collection of oracles that can be called by the
adversary. In this language, all variables are implicitly arrays,
which is rather non-standard but helpful to remember the
state of the whole game. In EasyCrypt, games are expressed
using a while language with procedures. Our translation
takes into account these differences and other subtleties
in semantics of cryptographic assumptions in CryptoVerif
as detailed in Section III. Our translation is included in
CryptoVerif 2.08pl1 available at https://cryptoverif.inria.fr.
The file cv2EasyCrypt/README.txt in that distribution
gives details on how to run our examples.

We apply this approach to several case studies, detailed
in Section IV. As a first example, we reduce the n query
“real/ideal” formulation of the IND-CCA2 assumption in
CryptoVerif to the standard formulation. We also reduce the
n-user games for authenticated key encapsulation mechanisms
(KEMs) to the 2-user version, for the Outsider-CCA property
(basically IND-CCA security of the KEM when the adversary
does not choose the secret keys used to produce challenge ci-
phertexts). This proof was done on paper in [1, Appendix A.1].
In the course of our work, we discovered errors in this
paper proof. We reported them to the authors, who then
fixed their proof in the last version of [1]. Finally, we show
computational Diffie-Hellman (CDH) and gap Diffie-Hellman
(GDH) [23] assumptions used by CryptoVerif, which allow
generating Diffie-Hellman values gaibj for n randomly chosen
ai and m randomly chosen bj , from standard CDH and GDH
assumptions for a single Diffie-Hellman pair. The proof relies
on the random self-reducibility of CDH and GDH in order to
optimize the obtained probability bound. It is valid for prime-
order groups, as well as for modern Diffie-Hellman structures
like Curve25519 and Curve448 [21], which are not quite
groups. Simplified versions of these results were proved on
paper in [10] for CDH and [1] for GDH; we extend and mech-
anize them. These case studies were chosen to cover a variety
of assumptions and show the applicability of the approach.

Related Work: Other ways of combining protocol veri-
fication tools also exist. At the symbolic level, SAPIC [20]
and its extension SAPIC+ [15] allow translating the same
input model into inputs for three different symbolic tools:
ProVerif [11], Tamarin [26], and DEEPSEC [16], a tool that
proves equivalence properties between two protocols, for a
bounded number of executions of the protocols. That allows
proving some properties using one tool and others using
another tool, from a single file. The support for lemmas and
axioms in Tamarin and ProVerif [12] also opens the possibility
of proving a lemma in one tool and using it as axiom in another
tool, which is also what we do, although in a different context.

At the computational level, CV2F⋆ (included in Cryp-
toVerif 2.08pl1 available at https://cryptoverif.inria.fr) trans-
lates CryptoVerif models into protocol implementations in F⋆

(https://fstar-lang.org/), a proof-oriented functional language
with dependent types. It extends a previous translation to
OCaml [14] by generating F⋆ lemmas for equations that are
used as assumptions on cryptographic primitives in Cryp-
toVerif. These lemmas can then be proved in F⋆ on the
implementation of the primitive. However, F⋆ is not very
suitable for proving indistinguishability axioms, also used
as assumptions on cryptographic primitives in CryptoVerif;
EasyCrypt, which we use in this work, is much more suitable
for that task because it offers a relational Hoare logic and a
notion of distribution useful for game-based proofs and F*
does not.

Combinations between symbolic and computational tools
can also be considered. In particular, the tools ProVerif and
CryptoVerif share a large common subset of their input
language for describing protocols. That allows users to first
verify a protocol at the symbolic level in ProVerif, trying to
find attacks. If no attack is found, one can then verify the
protocol at the computational level in CryptoVerif, which gives
a stronger security result but is also more difficult.

II. BACKGROUND ON EASYCRYPT

EasyCrypt is a proof assistant geared towards proving
properties of probabilistic programs. As a proof assistant,
it provides a functional language to define types, operators,
and logical formulas. On top of this, EasyCrypt provides a
small imperative WHILE language to describe probabilistic
programs. The language provides the usual control flow in-
structions (conditional, while loop, function call), assignment,
and a special instruction allowing to sample a value from a
(sub-)distribution (i.e., a distribution whose total probability
mass may be less than 1), making the language probabilistic.

The semantics of a statement takes a memory (a mapping
from variables to values) and returns a distribution over
memories. The semantics of procedures takes a memory and a
value (possibly a tuple) and returns a distribution over values
× memories (i.e the return value and the final memory).1 Since
procedures are semantically indexed distributions, we can talk
about the probability of events after executing procedures:

Pr[G(v) @ m : E]

The meaning of this judgment is the probability of the event E
(a predicate depending on the return value and the final
memory) in the distribution corresponding to the semantics
of G starting from the initial memory m and the argument v.

EasyCrypt follows the game-based proofs paradigm. In this
setting, security notions are expressed using games between
the security scheme and the adversary. All components are
represented using (high-order) probabilistic programs. For
instance, a game can be parametrized by a scheme and an ad-
versary, where the adversary has potentially access to oracles.

The high-order aspect is captured using a module system. A
module is a collection of procedures and global variables. A

1Since EasyCrypt allows sampling from sub-distributions as well as di-
verging programs, the semantics of statements and procedures can be sub-
distributions as well.

https://cryptoverif.inria.fr
https://cryptoverif.inria.fr
https://fstar-lang.org/

functor is a function from modules to modules. For instance,
adversaries are usually functors that expect modules as ar-
guments (the oracles) and return a collection of procedures.
A module type, or signature, is a collection of procedure
type declarations. It specifies the input and output types of
procedures a module of this type should provide.

The logic of EasyCrypt allows quantification over modules
of a given module type (e.g. the type of adversaries for some
security game G and some scheme S), allowing us to express
bounds on the advantage of an adversary against a game:

∀(A : Adv)m. |Pr[G(A,S).main(v) @ m : E]− 1

2
| ≤ ϵ(A).

This kind of quantification is usually too strong to obtain
a provable statement. It is generally necessary to restrict to
adversaries that cannot access certain parts of the memory. For
example, if the game stores a secret key in memory, security
can generally only be proved for adversaries that do not have
access to the secret key. Thus quantification over modules
generally comes with some memory restrictions:

∀(A : Adv{−G,−S}). . . .

This means that the quantification is restricted to modules of
type Adv that to not have (direct) access to the global variables
of the modules G and S.

On top of the logic described above, EasyCrypt offers the
notion of theories. A theory is a collection of types, operators,
axioms, modules, and lemmas. Types, operators, and axioms
can be declared without providing a concrete definition (or
proof in the case of axioms). It is then possible to refine a the-
ory by instantiating declared types and operators with concrete
definitions and proving the axioms stated about them. This
systematically refines all the types, operators, and lemmas in
the theory. While this operation is called cloning in EasyCrypt
we use the word instantiation in the remainder of the paper.

III. TRANSLATION FROM CRYPTOVERIF TO EASYCRYPT

CryptoVerif specifies assumptions on primitives as indistin-
guishability axioms L ≈p R, meaning that an adversary has
probability at most p of distinguishing the left-hand side L
from the right-hand side R. (p is typically a function of the
runtime of the adversary, the number of calls to oracles, and
possibly other parameters.) CryptoVerif then uses these axioms
by replacing L with R inside a bigger game [9].

We now describe the translation from CryptoVerif indis-
tinguishability axioms to EasyCrypt games. We do this by
giving two extended examples which together cover most of
the relevant features of the language of CryptoVerif. For each
example, we explain its semantics in CryptoVerif and how we
translate it to EasyCrypt. We then briefly mention some of the
features not covered by the examples.

A. IND-CPA Security

Our first example is the IND-CPA security game for a
symmetric encryption primitive. In this game, the adversary
is trying to distinguish an honest encryption oracle from an
oracle that encrypts the zero string of the appropriate length.

1 type cleartext.
2 type ciphertext.
3 type key [bounded].
4 type enc seed [bounded].
5

6 fun enc(cleartext, key, enc seed): ciphertext.
7 fun Z(cleartext):cleartext.
8

9 param N.
10 proba Penc.
11

12 equiv(ind cpa(enc))
13 k ←$ key;
14 foreach i ≤N do
15 r ←$ enc seed;
16 Oenc(x:cleartext) := return(enc(x, k, r))
17 ⇐(Penc(time, N, maxlength(x)))⇒
18 k ←$ key;
19 foreach i ≤N do
20 r ←$ enc seed;
21 Oenc(x:cleartext) := return(enc(Z(x), k, r))

Fig. 1. IND-CPA Security in CryptoVerif

While simple, this example allows us to explain most of the
core ideas behind the translation.

The CryptoVerif code of these games can be found in Fig. 1.
The first four lines declare the types used in the game. In
the order given: plaintexts, ciphertexts, encryption keys, and
encryption seeds. Semantically, types are sets of bit strings, but
CryptoVerif treats all types abstractly. Lines 6 and 7 declare
the function symbols enc and Z. CryptoVerif assumes that all
declared functions are effectively computable. The intended
interpretation is that enc is an encryption function, and Z
returns the zero string of the same length as its input.2 The rest
of the figure describes the actual indistinguishability axiom.
The general form is equiv(name) L ⇐(p)⇒R, where L and R
are oracle structures. These consist of a tree of random choices
(e.g. k ←$ key) and replications (e.g. foreach i ≤N do) with
oracle definitions at the leaves (e.g. Oenc(x:cleartext) :=...). A
random choice x ←$ T samples a value according the default
distribution of the type T and stores it in x. The default
distribution depends on the annotation of the type: for fixed
(i.e. fixed-length bit strings) and bounded (i.e. finite types) the
distribution is uniform; the annotation nonuniform leaves the
distribution unspecified (it must however be lossless, i.e. not
a subdistribution). A replication foreach i ≤N, where N is a
declared parameter, provides N copies of the code following it.
In particular, the adversary may call each (copy of a replicated)
oracle at most once. Oracles (e.g. Oenc) may take input from
the adversary and perform some computation (e.g. returning
the value of an expression).

2The intended interpretation is (clearly) not part of the CryptoVerif code.
The code in Fig. 1 simply tells CryptoVerif to assume some functions
satisfying the stated indistinguishability property, which should be the case
for the intended interpretation.

CryptoVerif ensures that the two sides of the equivalence are
compatible (i.e., they provide access to the same collection
of oracles), and the description of the adversary trying to
distinguish the two sides is given implicitly by this shared
signature. Moreover, every sequence of random choices (e.g.
lines 13, 15, 18, and 20) gives rise to an implicit oracle,
allowing the adversary to decide when these choices are made.
This is subject to the constraint that before an (implicit) oracle
can be called, all oracles above it in the oracle structure must
have been called.

Finally, all variables in CryptoVerif are arrays, indexed
by the current replication indices at their definition (i.e. the
indices of replications above that definition in the oracle
structure). When a variable is accessed with the same in-
dices as at its definition, the indices can be suppressed. In
particular, a variable defined outside of any replication has no
indices. A fully explicit rendering of lines 13 to 16 would be:

13 k[] ←$ key;
14 foreach i ≤N do
15 r[i] ←$ enc seed;
16 Oenc(x[i]:cleartext) := return(enc(x[i], k[], r[i]))

We now describe the translation of the example in Fig. 1
to EasyCrypt. We start by translating the declared types and
function symbols. This mostly amounts to declaring as the
corresponding types and functions in EasyCrypt:

1 type ciphertext.
2 type enc seed.
3 type key.
4 type cleartext.
5

6 axiom enc seed fin : finite type<:enc seed>.
7 axiom key fin : finite type<:key>.
8

9 op b N : int.
10 op Z : cleartext → cleartext.
11 op enc : cleartext × key × enc seed → ciphertext.

For the types tagged as bounded, we add an axiom asserting
that the type is finite (i.e. can be enumerated by a finite list).
Here, <: > is EasyCrypt syntax for passing type arguments
to polymorphic definitions. In particular, the finiteness axioms
ensure that the uniform distribution on the respective type is
well defined. The finite type predicate is defined in the Easy-
Crypt library. For the parameter N, we declare an (abstract)
integer constant b N.

As it comes to the indistinguishability axiom (i.e. from
line 12 onward), we represent each side of the equivalence
as a module. Since EasyCrypt, unlike CryptoVerif, does not
have built-in notions of games and adversaries, we have to
make these notions explicit first (cf. Fig. 2). We first define
the module types Oracles and Oracles i. The former specifies
all the procedures that the adversary is given access to, while
the latter also includes an initialization procedure called by the
game but inaccessible to the adversary. An Adversary is then
a functor taking a module implementing the Oracles module
type (e.g., the translation of the LHS or the RHS of the equiv

1 module type Oracles = {
2 proc r() : unit
3 proc r i(: int) : unit
4 proc p Oenc(i : int, x : cleartext) : ciphertext
5 }.
6

7 module type Oracles i = {
8 proc init() : unit
9 include Oracles
10 }.
11

12 module type Adversary (S : Oracles) = {
13 proc distinguish() : bool
14 }.
15

16 module Game (S : Oracles i, A : Adversary) = {
17 proc main() = {
18 var r : bool;
19 S.init();
20 r ←A(S).distinguish();
21 return r; }
22 }.

Fig. 2. The Distinguishability Game

described below) and providing a procedure distinguish. The
Game then takes a collection of oracles with initialization
procedure and an adversary, initializes the oracles, passes them
to the adversary, and calls the procedure distinguish. Note
that only the module type Oracles depends on the equivalence
being extracted. Thus, while having to describe the game adds
a certain amount of boilerplate, this is essentially the same for
all extracted equivalences.

We now describe the translation of oracle structures, the
most crucial part of the translation. We first describe the
module for the LHS. The complete module is given in Fig. 3.
Every module representing an oracle structure provides three
types of procedures: a procedure init that initializes the state
of the module and is not exposed to the adversary, procedures
whose names start with r that correspond to the implicit oracles
for sequences of random choices, and procedures whose names
starts with p that correspond to the oracle procedures present
in the CryptoVerif code.

We handle replicated random sequences and oracles (i.e.
those under a foreach i ≤N do replication) by adding the
indices i of the replications above them as integer arguments
of the corresponding procedure. We also introduce for every
oracle procedure (both implicit and explicit) a finite map from
index arguments to non-index arguments, or unit if there are
none (c.f. lines (3-5)). These maps store all oracle procedure
calls that have been performed. They are used for two main
purposes: ensuring that replicated oracles are called at most
once on any combination of (valid) indices, and enforcing the
order restrictions on oracle calls (e.g. that for all k, r i(k)
must be called before p Oenc(k, x) may be called for any
x). This is realized by wrapping the body of every oracle

1 module LHS
2 (O k : OL k.RO) (O r : OL r.RO) : Oracles i = {
3 var m r i : (int, unit) fmap
4 var m r : (unit, unit) fmap
5 var m Oenc : (int, cleartext) fmap
6

7 proc init() = {
8 m r i ← empty;
9 m r ← empty;
10 m Oenc ← empty;
11 O k.init();
12 O r.init();
13 }
14

15 proc r() = {
16 if (() /∈ m r) {
17 m r.[()] ← ();
18 O k.sample();
19 }
20 }
21

22 proc r i(i : int) = {
23 if (1 ≤ i ≤ b N ∧ () ∈ m r ∧ i /∈ m r i) {
24 m r i.[i] ← ();
25 O r.sample(i);
26 }
27 }
28

29 proc p Oenc(i : int, x : cleartext) = {
30 var aout : ciphertext ←witness;
31 var tmp k : key;
32 var tmp r i : enc seed;
33

34 if (1 ≤ i ≤ b N ∧ i ∈ m r i ∧ i /∈ m Oenc) {
35 m Oenc.[i] ← x;
36 tmp k ←O k.get();
37 tmp r i ←O r.get(i);
38 aout ← enc (x, tmp k, tmp r i);
39 }
40 return aout;
41 }
42 }.
43

44 module LHS = LHS (OL k.RO, OL r.RO).

Fig. 3. LHS Game for IND-CPA

in an if statement.3 For explicit oracles we also store the
values provided by the adversary, because these values may
be accessed by other oracles.

Perhaps most surprising is our translation of the random
variables k and r. A naive translation would employ finite
maps from indices to values, similar to the maps storing oracle

3EasyCrypt does not allow us to enforce order restrictions on procedure
calls. We therefore adopt the convention that whenever the adversary against
the EasyCrypt game makes an oracle call that would not be allowed by the
CryptoVerif semantics, we preserve the state of the game and immediately
return witness, an arbitrary but fixed/known value, making such calls use-
less/irrelevant.

arguments. We use an equivalent translation that simplifies
eager/lazy arguments (i.e. changing the point of the program
at which the random variable is sampled), because such
arguments are often needed when dealing with games trans-
lated from CryptoVerif (cf. Section IV-A). For every random
variable x, we introduce a module parameter O x. The default
implementation for these modules, which we call random
oracles, is just a wrapper around a finite map from indices
to sampled values: init() empties the map, sample(i) samples
the value for index i according to the default distribution
of the type (e.g., the uniform distribution for types tagged
as fixed or bounded) and stores it in the map, and get(i)
retrieves the value for i from the map (sampling one and
storing it if necessary). Thus, the full translation of the LHS
consists of the parameterized module LHS applied to default
implementations for all random oracles (cf. line 44). The
translation of the RHS is analogous.

All parts of the translation (i.e. types, axioms, operators, and
modules) are put into a theory. The user should then prove in
EasyCrypt the indistinguishability of the two generated games
for some instantiation of the generated theory. In particular,
the user should instantiate the operators according to their
intended meaning (e.g., enc should be instantiated with an
encryption function). The details of the instantiation depend
on the context: it may be proven for any IND-CPA encryption
scheme, if the user only assumes IND-CPA for the scheme in
EasyCrypt; it may also be proven for a particular encryption
mode, for example, in case the EasyCrypt theory is instantiated
with a definition of that mode. For the EasyCrypt proof to
apply to the implementation of a protocol, the instance proven
in EasyCrypt must contain the primitive that is actually used
in the implementation.

Ideally, the translation of the indistinguishability axiom
defined in CryptoVerif for the IND-CPA security should be
something of the form:

op Penc : int × int × int → real.
axiom LHS RHS &m (A <: Adversary{−LHS, −RHS}):
|Pr[Game(LHS, A).main() @ &m : res] −
Pr[Game(RHS, A).main() @ &m : res] |

≤Penc(time, N, maxlength(x)).

where Penc would be an abstract operator to be instantiated by
the user, and the axiom would need to be proved. While this
may be possible in principle, there are several reasons why
we did not proceed this way.

Due to the dependence of Penc on time, we would need to
restrict the quantification for A to time-bounded adversaries.
While this is possible in EasyCrypt, this would require the
user of our tool to use the cost logic of EasyCrypt [4]. This
logic was only added to EasyCrypt recently and is currently
not easy to use. Consequently, security bounds in EasyCrypt
are predominantly stated with respect to a concrete reduction.
That is, one proves that the advantage of some universally
quantified adversary A against some security game can be
bounded in terms of some adversary B(A) against a more
basic security notion. Here, B is a concrete reduction that

becomes part of the theorem statement. One therefore has to
check that, in addition to invoking A, B(A) does not perform
excessive computations. Given that most reductions do not go
beyond keeping logs or counters and performing a constant
number of (low cost) operations before/after calling A, this
is usually neither difficult nor error-prone.

We still want to aid the user in proving the right statement
about the extracted games (cf. Section III-C3). Therefore, we
emit the lemma that needs to be proved as a comment, leaving
a hole for the bound. This allows the user to decide whether
he wants to express the bound in EasyCrypt using a fixed
reduction or whether he wants to use the cost logic to obtain
a more self-contained statement. For our example, we emit:

lemma LHS RHS (A <: Adversary{−LHS, −RHS}) &m:
(forall (O <: Oracles{−A}),

islossless O.r ⇒islossless O.r i ⇒islossless O.p Oenc
⇒islossless A(O).distinguish) ⇒

|Pr[Game(LHS, A).main() @ &m : res] −
Pr[Game(RHS, A).main() @ &m : res] |

≤<bound>.

Here, the predicate islossless O.r asserts that the procedure
O.r terminates with probability 1. Thus, the assumption of the
lemma asserts that, provided all the oracles the adversary is
allowed to call are terminating, the adversary is terminating
as well. This hypothesis is justified, because CryptoVerif only
considers terminating adversaries.

B. IND-CCA2

Our next example is IND-CCA2 security for a public key
encryption scheme. The indistinguishability axiom is given
in Fig. 4. For reasons of space, we suppress the declaration
of those types and operators that are similar to the previous
example. That is, we now sample a keyseed rather than a key
and use pkgen/skgen to derive public/private keys as needed.

The main difference to the IND-CPA game is that the ad-
versary is now given access to a decryption oracle. Decryption
differs from encryption in that it can fail on certain inputs. For
this purpose, CryptoVerif uses the special type bitstringbot.
This type is interpreted as the type of all bit strings plus a
special element bottom indicating failure. The translation treats
this type specially: it is translated to the type bitstring option,
where the type bitstring is assumed to be countably infinite.

The second difference is that the decryption oracle on the
RHS needs access to preceding encryption queries in order
to stay consistent with the encryption oracle (which encrypts
zero strings). For this, the game employs a table called cipher.
Semantically, a table is a set of rows of the declared signature.
The command insert cipher(m, c1) inserts the pair (m, c1)
into the table. The command get cipher(m1, =c) in ... else ...
checks whether the table contains rows whose second compo-
nent equals c. If it does, it chooses a matching row uniformly
at random, stores the first component of that row in the
variable m1, and executes the in branch. Otherwise, the else
branch is executed. Note that m1 is an array variable, so it
may be accessed from other oracles. (Another presentation of
the IND-CCA2 assumption would reject requests to decrypt

1 fun dec(ciphertext, skey): bitstringbot.
2 fun injbot(cleartext):bitstringbot [data].
3

4 equation forall m:cleartext, k:keyseed, r:enc seed;
5 dec(enc(m, pkgen(k), r), skgen(k)) = injbot(m).
6

7 table cipher(cleartext, ciphertext).
8

9 equiv(ind cca2(enc))
10 k ←$ keyseed; (
11 Opk() := return(pkgen(k)) |
12 foreach i2 ≤N2 do Odec(c:ciphertext) :=
13 return(dec(c, skgen(k))) |
14 foreach i ≤N do r ←$ enc seed;
15 Oenc(m:cleartext) := return(enc(m, pkgen(k),r)))
16 ⇐(...)⇒
17 k ←$ keyseed; (
18 Opk() := return(pkgen(k)) |
19 foreach i2 ≤N2 do Odec(c:ciphertext) :=
20 get cipher(m1, =c) in return(injbot(m1))
21 else return(dec(c, skgen(k))) |
22 foreach i ≤N do r ←$ enc seed;
23 Oenc(m:cleartext) :=
24 c1 ← enc(Z(m), pkgen(k), r);
25 insert cipher(m, c1); return(c1)).

Fig. 4. IND-CCA2

ciphertexts produced by the encryption oracle, on both sides.
CryptoVerif does not allow this presentation, because it allows
only variables and function symbols in oracles in the left-hand
side, so one cannot test whether the ciphertext comes from
the encryption oracle in the left-hand side. This restriction
facilitates the game transformation that relies on this assump-
tion, because it makes it easier to match the left-hand side
with a bigger game, by just looking for appropriate function
symbols.)

In EasyCrypt, we represent the table as a list. The part of
the translation that deals with table access is given in Fig. 5
(insert just adds the pair to the list and is not shown). The
first part (lines 9 to 13) computes the list of possible values
for m1 (if the get binds multiple values, this will be a list
of tuples). Here, the function List.pmap takes a function f :
α → β option and a list s : α list and returns the list of y
such that f(x) = Some(y) for some x in s. If the list of
possible values is empty, we execute (the translation of) the
else branch. Otherwise, we use the distribution operator drat
to sample a value uniformly from the list of possible values.
We then store this value in a map v m1 before executing the
translation of the then branch. Generally, whenever a variable
is defined (e.g. also in Fig. 4 line 24), the translation creates a
map storing the value of this variable for different replication
indices.

In addition to the indistinguishability axiom, the code in
Fig. 4 also contains an equation stating the correctness of
the encryption scheme (c.f. line 4). CryptoVerif applies such
equations eagerly during proof search. All equations sharing

1 var v m1 : (int, cleartext) fmap
2 ...
3 var t cipher : (cleartext × ciphertext) list
4 ...
5 proc p Odec(i2 : int, c : ciphertext) = {
6 var aout : bitstring option ←witness;
7 ...
8 if (1 ≤ i2 ≤ b N2 ∧ () ∈ m r ∧ i2 /∈ m Odec) {
9 m Odec.[i2] ← c;
10 r 0 cipher ←List.pmap
11 (fun row : cleartext × ciphertext ⇒
12 let m1 = row.‘1 in
13 if (row.‘2 = c) then Some m1 else None)
14 t cipher;
15 if (r 0 cipher = []) { ... }
16 else {
17 m1 ←$ drat r 0 cipher;
18 v m1.[i2] ←m1;
19 aout ← injbot ((oget v m1.[i2]));
20 }
21 }
22 return aout;
23 }

Fig. 5. Translation of Table Access

1 k ←$ keyseed; (
2 Opk() := return(pkgen(k)) |
3 foreach i2 ≤N2 do Odec(c:ciphertext) :=
4 find j ≤N
5 suchthat defined(c1[j],m[j]) & c = c1[j]
6 then return(injbot(m[j]))
7 else return(dec(c, skgen(k))) |
8 foreach i ≤N do r1 ←$ enc seed;
9 Oenc(m:cleartext) :=
10 c1:ciphertext ← enc(Z(m), pkgen(k), r1);
11 return(c1)).

Fig. 6. RHS of IND-CCA2 (using find)

function symbols with the equivalence being extracted are
translated to axioms in EasyCrypt. Thus, in addition to proving
that the indistinguishability property holds for the instance
provided by the user, the user should prove that the instance
satisfies all the equations assumed by CryptoVerif. In addition
to explicit equational axioms, functions tagged with [data]
are assumed to be injective, and the translation generates the
corresponding injectivity axiom. Intuitively, the inverse should
be efficiently computable, but formally, in the exact security
framework, that just means that the probability of breaking the
protocol may increase with the runtime of the inverse.

Instead of using a table, the RHS of Fig. 4 can also
be written using a find construct. This is shown in Fig. 6.
The find construct (lines 4 to 7) checks whether there exist
indices j satisfying the condition following the suchthat. Here,
defined(...) checks that the variables passed as arguments have
been defined. If there exist indices satisfying the suchthat

1 proc p Odec(i2 : int, c : ciphertext) = {
2 ...
3 if (...) {
4 m Odec.[i2] ← c;
5 j list ←List.filter (fun j ⇒
6 (j ∈ v c1 ∧ j ∈ m Oenc) ∧ c = (oget v c1.[j]))
7 (iota 1 b N);
8 if (j list = []) {
9 tmp k ←O k.get();
10 aout ← dec (c, skgen (tmp k));
11 } else {
12 j ←$ drat j list;
13 aout ← injbot ((oget m Oenc.[j]));
14 }
15 }
16 return aout;
17 }

Fig. 7. Translation of find

clause, j is chosen uniformly at random among these indices
and the then branch is executed. Otherwise, the else branch is
executed. The translation to EasyCrypt (cf. Fig. 7) first filters
the list of all possible indices (e.g. in our example this is the
list [1,..,b N], written iota 1 b N in EasyCrypt) and then,
similar to the translation of get, executes either the else branch
or the then branch with a matching index chosen uniformly at
random. If the condition involves random variables, which is
not the case in our example, checking the condition requires
access to the map stored in the corresponding random oracle.
In those cases, we change the type and implementation of
the random oracle to one that exposes the internal map (see
also Section IV-A). CryptoVerif supports find statements of
the form find i1 ≤ N1, ..., ik ≤ Nk suchthat... searching for
combinations of indices. In this case, we construct the list of
all combinations of indices satisfying the condition and then
select one of these combinations uniformly at random.

Internally, CryptoVerif expands tables to variable definitions
and find statements. Thus, we could have chosen to only
translate find statements. However, reasoning about the rows
of a table is often more natural (i.e. closer to textbook argu-
ments employing logs) than reasoning about array variables.
In particular, reasoning about find statements usually requires
complicated invariants relating the values of multiple array
variables at certain indices. For tables, it is often sufficient to
quantify over the rows in the table.

C. Other Features

1) Arguments of Oracles used as Indices: In the left-hand
side L, CryptoVerif allows array accesses x[j1, . . . , jm] where
x is any variable and j1, . . . , jm are arguments of the oracle
O. In this case, oracle O can be called only when x is defined
at indices j1, . . . , jm. Although this condition on oracle O is
specified by looking only at the left-hand side L, it also applies
to calls to O in the right-hand side R.

1 module type Adversary (S : Oracles) = {
2 proc distinguish() : unit
3 proc guess(: ... fmap × ... × ... fmap) : bool {}
4 }.
5

6 module Game (S : Oracles i, A : Adversary) = {
7 proc main() = {
8 S.init();
9 A(S).distinguish();
10 rnds ← S.unchanged();
11 r ←A(S).guess(rnds);
12 return r;
13 }
14 }.

Fig. 8. Game in the Presence of Unchanged Variables

While this point may be counter-intuitive, it is motivated
as follows: the indistinguishability axiom L ≈p R is used
to replace oracles of L with oracles of R in some game. If
an array access x[j1, . . . , jm] occurs in a term M , equal to
the term returned by O, in the initial game, then that array
access is guaranteed to be defined in the (initial) game. After
the replacement of oracles of L with oracles of R, the same
access x[j1, . . . , jm] is still guaranteed to be defined in the
(transformed) game.

Accordingly, the EasyCrypt translation verifies that these
variables x[j1, . . . , jm] are defined at the beginning of the
translation of O, and returns immediately with the uninfor-
mative result witness when they are not.

2) unchanged: Some random choices in the right-hand side
R may be marked [unchanged], when there is a randomly
chosen variable of the same name and type in the matching
sequence of random choices in the left-hand side L. Intuitively,
this annotation means that the value of this random choice
remains unchanged when we replace L with R. This anno-
tation allows CryptoVerif to replace L with R inside a game
in which variables marked [unchanged] occur as arguments
of events: the adversary observes the events at the end of the
game and will not be able to use these variables to distinguish
the transformed game from the initial game, since the value
of these variables is unchanged.

Formally, it means that the probability bound for distin-
guishing L from R applies even when the adversary is given
access to the values of these random choices after executing
all calls to oracles of L, resp. R. The translation captures this
by adapting the security game accordingly (cf. Fig. 8). Here,
S.unchanged is a procedure, inaccessible to the adversary
because the module type of the adversary does not mention it,
returning the finite maps storing all the values of the array
variables tagged as unchanged. Further, the annotation {}
(Fig. 8 line 3) ensures that the procedure A(S).guess cannot
make (further) calls to the oracles provided by S.

3) events: CryptoVerif allows events to happen in the right-
hand side of the equivalence. These events are a way to do up-
to-bad reasoning in CryptoVerif. They are taken into account

in the translation by setting a variable and adapting the formula
of the probability to be bounded to include the probability of
these events. CryptoVerif considers two categories of events.

First, CryptoVerif supports annotating find and get with
[unique]. In the presence of this annotation, rather than sam-
pling a matching replication index or table row uniformly at
random, the game only selects an index/row if the choice is
unique. If the choice is not unique, the game aborts with
an event that is visible to the adversary. Due to a syntactic
restriction in CryptoVerif, this can only happen on the right-
hand side, effectively telling the adversary that it is interacting
with that side.

In the translation, when the RHS contains a [unique] anno-
tation, we introduce a variable RHS .not unique that is set to
true whenever there is more than one choice. For these games,
the formula that the user should prove becomes:

|Pr[Game(LHS, A).main() @ &m : res] −
Pr[Game(RHS, A).main() @ &m : res ∨ RHS .not unique]|
≤<bound>.

By negating the result of the adversary, we can show that this
formula is equivalent to

Pr[Game(LHS, A).main() @ &m : res] ≤
Pr[Game(RHS, A).main() @ &m : res ∧ !RHS .not unique]
+ <bound>.

This point is proved in Appendix A.
Second, CryptoVerif also supports explicitly aborting the

game using a statement of the form event abort <name>.
This is translated in a similar fashion, setting the variable
RHS .abort to true when never such a statement is encoun-
tered. However, unlike the case for [unique], triggering an
abort event is counted as a failure to distinguish the two sides.
In these cases, the formula to prove therefore becomes:

Pr[Game(LHS, A).main() @ &m : res] ≤
Pr[Game(RHS, A).main() @ &m : res ∨ RHS .abort]
+ <bound>.

In the presence of event abort <name> in the right-hand
side, the transformation of the left-hand side LHS into the
right-hand side RHS intuitively groups together two steps: the
transformation of LHS into an intermediate game G that differs
from LHS only when the event <name> is executed, which
implies that

Pr[Game(LHS, A).main() @ &m : res] ≤
Pr[Game(G, A).main() @ &m : res ∨ RHS .abort]

and a transformation of G into RHS for which we bound the
probability of distinguishing G from RHS. Combining the two
properties yields the inequality above.4 For games that contain

4The probability of event <name> can typically not be bounded in the
assumption on the primitive itself, but will be bounded by CryptoVerif
in subsequent steps of the proof of the whole protocol. For instance,
event abort <name> is executed when the adversary reuses a nonce in an
encryption scheme with nonces, which breaks the security of the scheme.
At the level of the cryptographic assumption on the encryption scheme, the
adversary provides the nonces, and may therefore reuse several times the
same nonce. That triggers the event event abort <name> and CryptoVerif
will bound the probability of that event by showing that nonces are never or
very rarely reused in the whole protocol.

1 module Ideal : Oracle = {
2 var pk : pkey
3 var sk : skey
4 var cs : (ciphertext, plaintext) rmap
5

6 proc init() : unit = {
7 ks ←$ dkeyseed;
8 pk ← pkgen ks;
9 sk ← skgen ks; }
10

11 proc pk () = { return pk; }
12

13 proc enc (m : plaintext) : ciphertext = {
14 e ←$ dencseed;
15 c ← enc(Z(m), pk, e);
16 cs ← cs.[c ←m];
17 return c; }
18

19 proc dec (c : ciphertext) : plaintext option = {
20 if (c ∈ cs) {
21 m ←$ cs.[c];
22 } else {
23 m ← dec(c, sk);
24 }
25 return m; }
26 }.

Fig. 9. “Ideal” Intermediate Game For IND-CCA2

both the annotation unique and an abort event, the formula to
prove becomes

Pr[Game(LHS, A).main() @ &m : res] ≤
Pr[Game(RHS, A).main() @ &m : res ∧ !RHS .not unique
∨ RHS .abort] + <bound>.

In contrast to the probability of RHS .abort, the probability
of RHS .not unique is counted in the probability bound that
we compute. That is why we negate RHS .not unique in the
formula above and do not negate RHS .abort.

IV. CASE STUDIES

A. IND-CCA2

We now prove that every IND-CCA2 secure encryption
scheme validates the indistinguishability axiom in Fig. 4. In
EasyCrypt, we define IND-CCA2 security via the usual secu-
rity game where the adversary passes two messages (of equal
length) to an encryption oracle and then tries to determine
which of the two messages was encrypted. While the proof
is completely standard from the mathematical perspective, it
allows us to explain some of the common proof patterns for
reasoning about the games extracted from CryptoVerif.

The first proof pattern is that we always introduce an
intermediate game capturing the essence of the game extracted
from CryptoVerif. The intermediate game for the right-hand
side is given in Fig. 9. The main differences to the extracted
game are: the key seed is sampled during init; the encryption

IND-CCA2
01 (sk , pk)

$← Gen

02 b
$← {0, 1}

03 C ← ∅
04 b′ ← ALREnc,Dec(pk)
05 return b′ = b

AdvIND-CCA2(A) = |2Pr[b′ = b]− 1|

Oracle LREnc(m0,m1)
06 c← Enc(pk ,mb)
07 C ← C ∪ {c}
08 return c

Oracle Dec(c)
09 if c ∈ C return ⊥
10 m← Dec(sk , c)
11 return m

Fig. 10. Standard IND-CCA2 Security game

seed is sampled within the procedure enc; and the implicit or-
acles for the random variables have been removed. In addition,
we replace the table with a random map (type constructor rmap
in line 4) where map updates (e.g. cs.[c ←m]) are cumulative
(i.e., a single key can be mapped to multiple values) and
map access (e.g. cs.[c]) is a distribution selecting a binding
uniformly at random. The left-hand side game is analogous,
encrypting m rather than Z(m) and removing all lines dealing
with cs.

The changes to random sampling, which we make to most
of the games we extract, motivate the extraction of random
variables as random oracles: while moving random sampling
between procedures is hard in general, EasyCrypt provides
lemmas to replace the default implementation of a random
oracle with an eager or lazy implementation. Here, we replace
the random oracle for the key seed, whose domain is the
singleton type unit, with an eager implementation that samples
the single contained value during initialization. Similarly,
we replace the random oracle for the encryption seed with
a lazy implementation where sample does nothing, causing
sampling to occur when get is called. This turns the implicit
oracles into no-ops, making it straightforward to turn every
adversary distinguishing the extracted games into an adversary
distinguishing the - much simpler - intermediate games.

Changing the implementation of the random oracle for some
random variable is only possible if the CryptoVerif game
does not contain a find statement with a condition involving
that random variable. Such find statements require an oracle
implementation exposing the internal map, making the lemmas
for changing oracle implementations inapplicable.

The reduction from the standard IND-CCA2 security game
(cf. Fig. 10)5 to our intermediate game is straightforward and
was adapted from a preexisting EasyCrypt proof.

Theorem 1: For every adversary A against the (extracted)
IND-CCA2 game from CryptoVerif, making at most qenc
queries to the encryption oracle and at most qdec queries to
the decryption oracle, there exists an adversary B against the
standard IND-CCA2 game, making at most qdec queries to the

5The definition of IND-CCA2 security often splits the adversary into two
parts: the first one returns two messages m0 and m1 and the second one takes
as argument the challenge ciphertext Enc(pk ,mb) [7]. Instead, Fig. 10 uses
a left-or-right encryption oracle LREnc that can be called by the adversary. It
is easy to show that the definition of Fig. 10 implies that of [7], by building
a single adversary from the two parts. The converse is more tricky and we
do not know how to prove it in EasyCrypt. That is why we start with the
definition of Fig. 10.

decryption oracle Dec and a single query to the left-or-right
encryption oracle LREnc such that6

AdvCV-IND-CCA2(A) ≤ qenc · AdvIND-CCA2(B).

For all our case studies, the full proof can be found at
https://cryptoverif.inria.fr/cv2EasyCrypt/ and in subdirectory
cv2EasyCrypt of the CryptoVerif 2.08pl1 distribution
available at https://cryptoverif.inria.fr.

B. OutsiderCCA Security for Authenticated KEMs

An authenticated key encapsulation mechanism
(AKEM) [1], [2] consists of three (probabilistic) algorithms:
• Gen outputs a key pair (sk , pk), where pk defines a key

space K.
• AuthEncap takes as input a (sender) secret key sk and a

(receiver) public key pk , and outputs a pair (c,K) where
c is an encapsulation and K ∈ K is the (shared) secret
key contained in c.

• AuthDecap takes as input a (receiver) secret key sk ,
a (sender) public key pk , and an encapsulation c, and
deterministically outputs a shared key K ∈ K.

We require that for all (sk1, pk1) ∈ Gen, (sk2, pk2) ∈ Gen,

Pr
(c,K)←AuthEncap(sk1,pk2)

[AuthDecap(sk2, pk1, c) = K] = 1 .

The indistinguishability axiom in CryptoVerif for
OutsiderCCA secure authenticated KEMs models a scenario
where we have n honest parties. For every honest party
1 ≤ i ≤ n we sample a keypair (pk i, sk i). In the “real” game,
the adversary is given access to the following oracles for
every honest party i: an oracle returning the public key pk i for
that party; an encapsulation oracle taking a (receiver) public
key pk and returning (c,K) := AuthEncap(sk i, pk); and a
decapsulation oracle taking a (sender) public key pk and an
encapsulation c and returning K := AuthDecap(sk i, pk , c). In
the “ideal” game, the encapsulation oracle computes (c,K) in
the same way as in the “real” game. However, if the provided
public key belongs to an honest party (i.e. the adversary
does not know the secret key) it returns (c,K ′) where K ′ is
sampled uniformly at random. The game uses a table to keep
the answers of the decapsulation oracle consistent with this
randomization. We ignore the implicit oracles for sampling
random values; these can be removed in the same fashion as
in the previous section.

We prove that indistinguishability of the n-user games
described above is implied by indistinguishability of the 2-
user games 2-OutsiderCCAℓ and 2-OutsiderCCAr given in
Fig. 11 (2-OutsiderCCAr includes the parts in dashed boxes;
2-OutsiderCCAℓ does not) where the adversary is restricted to
a single challenge query. The proof is based on the initial revi-
sion of [1, Appendix A.1] and is carried out in two parts. We
first show, using a standard hybrid argument, that security for
one challenge query implies security for qc challenge queries.
We then give a sequence of games Gu,v (with 0 ≤ u, v ≤ n)

6While we do not verify this in EasyCrypt, we also have that Time(A) ≈
Time(B).

2-OutsiderCCAℓ / 2-OutsiderCCAr

01 (sk1, pk1)
$← Gen

02 (sk2, pk2)
$← Gen

03 E ← ∅
04 b

$← AAEncap,ADecap,Chall(pk1, pk2)
05 return b

Oracle Chall(i ∈ [2], j ∈ [2])

06 (c,K)
$← AuthEncap(sk i, pk j)

07 K
$← K

08 E ← E ∪ {(pk i, pk j , c,K)}

09 return (c,K)

Oracle AEncap(i ∈ [2], pk)

10 (c,K)
$← AuthEncap(sk i, pk)

11 return (c,K)

Oracle ADecap(j ∈ [2], pk , c)

12 if ∃K : (pk , pk j , c,K) ∈ E
13 return K (uniformly sampled among matching K)

14 K ← AuthDecap(sk j , pk , c)
15 return K

Fig. 11. 2-OutsiderCCA Security

and show that for every adversary A against the OutsiderCCA
game (extracted from CryptoVerif) there exists an adversary
B against the 2-OutsiderCCA game such that:

1) Gn,n perfectly simulates A interacting with the “real”
OutsiderCCA game

2) G1,0 perfectly simulates A interacting with the “ideal”
OutsiderCCA game

3) Gu,n perfectly simulates Gu+1,0 whenever 1 ≤ u < n
4) B interacting with the “real” 2-OutsiderCCAℓ game is

perfectly simulated by sampling 1 ≤ u, v ≤ n uniformly
at random and then running Gu,v .

5) B interacting with the “ideal” 2-OutsiderCCAr game is
perfectly simulated by sampling 1 ≤ u, v ≤ n uniformly
at random and then running Gu,v−1.

Thus, the probability of B winning the “real” game can
be written as 1

n2

∑n
u=1

∑n
v=1 Pr[Gu,v ⇒ 1], and the prob-

ability of B winning the “ideal” game can be written
as 1

n2

∑n
u=1

∑n
v=1 Pr[Gu,v−1 ⇒ 1]. Canceling the common

terms and combining this with the first part, we obtain the
theorem we have mechanized in EasyCrypt:

Theorem 2: For every adversary A against the (extracted)
OutsiderCCA game making at most qe queries to the encapsu-
lation oracle and at most qd queries to the decapsulation oracle
there exists a 2-OutsiderCCA adversary B making at most 2qe
queries to AEncap, at most qd queries to ADecap, and at most
one query to Chall such that:

AdvOutsiderCCA(A) ≤ n2qe · Adv2-OutsiderCCA(B) + n2PAKEM

https://cryptoverif.inria.fr/cv2EasyCrypt/
https://cryptoverif.inria.fr

where PAKEM is the probability that two calls to Gen generate
the same public key.
The mechanized proof corrects two errors from [1]. We fix
a counting error, leading to a factor of 2 in the queries to
AEncap made by B. Further, the proof only works in the
absence of public key collisions and the original proof failed
to account for that. Specifically, the n users must have distinct
public keys to keep the log of ciphertexts coherent between
the n-user game and the combination of the 2-user game and
a simulator that simulates the remaining n−2 users. Bounding
the probability of public key collisions leads to an additional
probability term of n2PAKEM. After being contacted by us, the
authors acknowledged the errors and updated their proofs.7

Finally, in the original formulation of the indistinguishability
axiom in CryptoVerif, the randomness used in the algorithms
was tagged as unchanged, leaking the randomness to the ad-
versary and making the axiom unsatisfiable by any reasonable
AKEM. However, the extra flexibility that comes with this
annotation was not used in the proof of HPKE of [1], making
the error trivial to fix: the fixed axiom is compatible with all
examples distributed with CryptoVerif, without any change.

C. Computational Diffie-Hellman assumption

The computational Diffie-Hellman assumption (CDH) is
usually defined as follows [23]: given a group G of prime order
q, with a generator g, an adversary succeeds against CDH
when it computes gab knowing ga and gb for two random ex-
ponents a, b ∈ [1, q−1]. The modeling of the CDH assumption
in CryptoVerif extends this definition in two directions.

First, it considers not only a single pair of exponents a, b,
but two families of exponents ai (i ∈ {1, . . . , na}) and bj (j ∈
{1, . . . , nb}), and considers all Diffie-Hellman values gaibj .
This makes the assumption apply when protocol participants
perform several sessions of a Diffie-Hellman exchange.

Further, the CryptoVerif CDH assumption also allows some
of the exponents ai, bj to be queried by the adversary (i.e.,
compromised). As other assumptions on primitives in Cryp-
toVerif, CDH is formalized as indistinguishability between two
games L ≈ R: L returns m = gaibj with m, i, and j coming
from the adversary, while R returns false instead when the
adversary cannot compute gaibj by CDH (i.e., when neither ai
nor bj was compromised). The variables ai and bj are marked
[unchanged] (see Section III-C): they have the same value in
L and R. The CDH game transformation can thus be applied
even when these variables occur as arguments of events in the
game.

Second, the CryptoVerif assumption for CDH supports not
only prime-order groups, but also modern Diffie-Hellman
structures such as Curve25519 and Curve488, used in proto-
cols like TLS 1.3 [25] and the VPN WireGuard [18], which,
strictly speaking, are not groups. In order to achieve this goal,
it uses the notion of nominal groups first introduced in [1],
[2], which axiomatizes properties needed of Diffie-Hellman

7The corrections made by the authors differ from the corrections we
proposed in that they restructure the proof and thereby manage to avoid the
factor 2 in encapsulation queries.

structures and satisfied both by prime-order groups and by
Curve25519/Curve448.

Definition 1: A nominal group N = (G,Z, g,DH , exp, ˆ,
mult, EU , f, inv) consists of an efficiently recognizable finite
set of elements G (also called “group elements”), a set of
exponents Z , a base element g ∈ G, a distribution of honest
exponents DH over Z , two efficiently computable exponentia-
tion functions exp : G×Z → G and ˆ : G×Z → G, where we
write Xy for ˆ(X, y), an efficiently computable associative
and commutative function mult : Z × Z → Z , where we
write xy for mult(x, y), a finite set of exponents EU ⊆ Z ,
a factor f ∈ Z , and an efficiently computable function
inv : EU ∪ {f} → Z . We require the following properties:

1) (Xy)z = Xyz for all X ∈ G, y, z ∈ Z;
2) gxinv(x) = g for all x ∈ EU ∪ {f};
3) exp(X, y) = Xyinv(f) for all X ∈ G, y ∈ Z;
4) the functions ϕ : EU → G defined by ϕ(y) = exp(g, y)

and for x ∈ EU , ϕx : EU → G defined by ϕx(y) =
exp(g, xy) are injective and all have the same image.

Groups of prime order q are instances of nominal groups,
where G is the group, Z = EU = Z∗q , mult and inv are
the usual product and inverse on Z∗q , exp = ˆ is the usual
exponentiation, f = 1, DH is the uniform distribution on Z∗q .
Properties 1 and 2 are standard properties of exponentiation.
Property 3 is clear from exp = ˆ and f = 1. In Property 4, the
common image of ϕ and ϕx is G minus its neutral element.

Curve25519 and Curve448 are also instances of nominal of
groups, actually in two ways, which we sketch briefly. In the
simplest way, f = inv(f) = 1, inv is the inverse modulo a
prime p, and both exponentiation functions are the same.

However, for Curve25519 and Curve448, choosing f to be
the cofactor of the curve (8 for Curve25519, 4 for Curve448)
yields a more precise model: these curves are unions of
groups of cardinals fp and f ′p′ where f ′ divides f , p and p′

are large primes, and the exponents are always multiple of f .
We take advantage of this property to work in the subgroups
of cardinals p and p′: Xy = (Xf)y/f = exp(Xf , y) and we
have the guarantee that Xf is in one of these subgroups. This
is why we introduce a second exponentiation function exp
that divides the exponents by f , as defined by Property 3.
The set EU provides exactly one exponent y to generate
each element exp(g, y), which correspond to elements of
the subgroup of cardinal p in Curve25519 and Curve448
(cf. Property 4). Such a model was used with pen-and-paper
proofs in [22]. Our definition of nominal groups generalizes
the one of [1], [2] by allowing f ̸= 1, thus supporting such
more precise models of Curve25519 and Curve448.

The CDH assumption on nominal groups becomes: given
a nominal group N = (G,Z, g,DH , exp, ˆ,mult, EU , f, inv),
an adversary A succeeds against CDH when it computes
exp(g, ab) knowing exp(g, a) and exp(g, b) for two random
exponents a, b chosen uniformly in EU . Its probability of
success is denoted SuccCDH

N (A).
Adapting to the notion of nominal groups, the CDH as-

sumption in CryptoVerif uses exp instead of ˆ and chooses the
exponents ai and bj according to the distribution of honest

exponents in the nominal group DH , which is the uniform
distribution on EU for prime-order groups, but differs for
Curve25519 and Curve448. We translate the two games L and
R of this assumption into EasyCrypt and reduce in EasyCrypt
the indistinguishability L ≈ R to the CDH assumption in
the nominal group. The EasyCrypt proof mostly follows the
same strategy as the mathematical paper proof detailed in
Appendix B. In short, we first show that the two extracted
games are equivalent up to an event bad, where bad is
triggered when the adversary provides m, i, j such that
m = exp(g, aibj) having queried neither ai nor bj (hence
the adversary managed to compute exp(g, aibj) knowing only
exp(g, ai) and exp(g, bj)). Second, we change the distribution
of exponents from DH to the uniform distribution on EU , with
a probability loss (na + nb)∆N , where ∆N is the statistical
distance between these two distributions, which depends on
the particular nominal group. Third, we construct a simulator
that is given a CDH instance (X,Y) and probabilistically
injects that instance into the game by relying on the random
self-reducibility of the CDH problem [13]: given an instance
of the CDH problem, any other instance can be obtained
by re-randomization. More precisely, each exponential Ai =
exp(g, ai) is replaced with Xαi for αi ←$ EU with probability
pa (in this case, the simulator does not know ai because it does
not know the discrete logarithm of X) and with exp(g, αi)
for αi ←$ EU with probability 1− pa (in this case, ai = αi).
We proceed similarly for Bj = exp(g, bi) using probability
pb. The simulator loses if it is queried for an exponent ai
or bi that it does not know. Otherwise, the two games are
perfectly indistinguishable by Property 4. The simulator wins
(i.e. successfully solves the CDH instance (X,Y)) when the
bad event is triggered for indices where the simulator injected
the given instance, that is, Ai = Xαi and Bj = Y βj . Since
the simulator cannot check whether the adversary solved its
instance, one guesses randomly the decisional Diffie-Hellman
query m = exp(g, aibj) for which the bad event is triggered.
Finally, we optimize the probabilities pa and pb to maximize
the probability of success of the simulator. This leads to the
following theorem, which we have mechanized in EasyCrypt:

Theorem 3: Let N be a nominal group, and let A be an
adversary against the (extracted) CDH assumption from Cryp-
toVerif for N . That is, A is given access to Ai = exp(g, ai)
(i ∈ {1, . . . , na}) and Bj = exp(g, bj) (j ∈ {1, . . . , nb}) with
the ai and bj sampled from DH ; A can compromise qa of the
ai and qb of the bj ; and A can make at most qddh attempts
to provide (m, i, j) such that m = exp(g, aibj) (not involving
compromised exponents). Then there exists an adversary B
making a single attempt to solve a single (random) instance
of the CDH problem for N such that:

SuccCV-CDH(A) ≤ qddh(1 + 3qa)(1 + 3qb) · SuccCDH
N (B)+

(na + nb)∆N .

The mechanized proof largely follows the structure of the
paper proof sketched above, so we only comment briefly on
two aspects regarding the mechanization.

First, the variables for ai and bj are marked [unchanged]
in CryptoVerif and thus given to the adversary after it has made
all his queries. Given that the first step of the proof is an up-
to-bad argument where the bad event can only occur when the
adversary makes an oracle call with m = exp(g, aibj), giving
the adversary access to the exponents after all queries have
been made does not affect the proof in any significant way. We
remark that marking random variables as [unchanged] and
eliminating the associated oracles using up-to-bad arguments
is a standard pattern for computational assumptions.

Second, the re-randomization argument requires some care
in EasyCrypt. Proving indistinguishability of two games in
the probabilistic relational Hoare logic (pRHL) of EasyCrypt
amounts to (interactively) constructing a probabilistic coupling
linking the two programs. For the sampling of αi ←$ EU
(i ∈ {1, . . . , na}), this amounts to providing a bijection h
on EU that makes the rest of the game indistinguishable (i.e.
ensures that exp(g, h(αi)) = if γi then Xαi else exp(g, αi)
where γi is true when the simulator injects X from the CDH
instance (X,Y) at index i). By Property 4, such a bijection
exists for every value X = exp(g, x) passed to the simulator.

D. Gap Diffie-Hellman assumption
The gap Diffie-Hellman (GDH) assumption [23] strengthens

the CDH assumption by giving the adversary an additional
decisional Diffie-Hellman oracle DDH(G,X, Y, Z) that tells
the adversary whether X , Y , Z is a good Diffie-Hellman triple
with generator G, that is, whether there exists x and y such that
X = Gx, Y = Gy , and Z = Gxy . Given a group G of prime
order q, with a generator g, an adversary succeeds against
GDH when it computes gab knowing ga and gb for two random
exponents a, b ∈ [1, q − 1], with access to the DDH oracle.

The modeling in CryptoVerif extends this definition as in
Section IV-C, considering in particular nominal groups. This
modeling includes oracles that allow CryptoVerif to detect that
certain equalities between exponentiations involving ai and/or
bj can be decided using the DDH oracle, without compromis-
ing ai or bj . Further, in order to help CryptoVerif match the
game against a protocol, the CryptoVerif modeling includes
a number of additional oracles that are redundant from the
mathematical point of view. In total, the game has 28 oracles.

Our proof mechanizes and extends a previous pen-and-paper
proof [1], which considers a more restricted DDH oracle in
which the generator G is always g, considers only nominal
groups with f = 1, and does not consider the compromise of
exponents ai and bj . As above, we translate the CryptoVerif
games to EasyCrypt and prove their indistinguishability. The
most fundamental difference in the proof is that, thanks to the
DDH oracle, the simulator can determine which query raised
the bad event instead of guessing it, which removes a factor
qddh in the probability bound. Thus, under conditions similar
to those of Theorem 3 we obtain the following bound:

SuccCV-GDH(A) ≤ (1 + 3 (qa +min(1, qddhma))) ·
(1 + 3 (qb +min(1, qddhmb))) ·
SuccGDH

N (B) + (na + nb)∆N

where qddhma is the number of queries to the oracle
ddhma(m, i′, i, j) = (exp(m, ai′) = exp(g, aibj)), and
qddhmb is similar with bj′ instead of ai′ . In order to solve
the CDH instance (X,Y) when the bad event is raised by
such a query, one needs the replacement exponential for
Ai′ = exp(g, ai′) (resp. Bj′ = exp(g, bj′)) not to involve
that CDH instance. This is the same requirement as for
compromised exponents, hence this situation has the same
effect as having one more compromised exponent.

V. CONCLUSION

We present a tool that translates CryptoVerif assumptions to
EasyCrypt games. This translation is included in CryptoVerif
2.08pl1 available at http://cryptoverif.inria.fr. The implemen-
tation consists of 3000 lines of OCaml and works in two
passes: the first pass collects information needed to generate
the code (declared functions, equations, oracles, variables, ...)
and produces an intermediate representation; the second pass
generates the actual EasyCrypt code from this intermediate
representation.

Our translation allows using each tool where it is the
most convenient: one can benefit from the automation
of CryptoVerif to prove security protocols, and from the
expressive power of EasyCrypt in order to prove assumptions
on cryptographic primitives made in CryptoVerif proofs. We
demonstrate the usefulness of our approach by applying it
to several case studies: IND-CCA2 encryption, authenticated
KEM, CDH and GDH assumptions. Our work also allowed
us to discover and fix errors in the pen-and-paper proof of the
authenticated KEM property. In total, the EasyCrypt proofs
accompanying this paper amount to approximately 9300
(non-blank) lines. For every case study, the proof consists
of a theory containing the core mathematical argument and
a “bridging” theory that links these proofs with the games
extracted from CryptoVerif. For the former part, the proof
effort is in line with similar EasyCrypt proofs. The latter part
is verbose and repetitive, but much quicker to write than the
former. We could envision to generate it automatically. For
the individual case studies we have:

Case Study “Bridging” Proofs “Mathematical” Proofs
IND-CCA2 367 lines 862 lines

OutsiderCCA 553 lines 1756 lines
CDH 614 lines 1211 lines
GDH 1493 lines 2294 lines

All our case studies relate a n-query or n-key CryptoVerif
assumption to a single query or single key EasyCrypt as-
sumption. This is the most common case, because CryptoVerif
requires n-query or n-key assumptions in order to be able to
apply these assumptions to protocols using several queries or
keys, while standard cryptographic assumptions are generally
stated for a single query or key when possible. Still, the
first two case studies (IND-CCA2 and OutsiderCCA) are
hybrid arguments, while the CDH and GDH case studies
are mathematically much more complex because we exploit
random self-reducibility of the Diffie-Hellman assumptions.

As an example, we believe that our approach would allow us
to mechanize all paper proofs of the HPKE case study [1]: the
GDH assumption of [1] is a restricted case of ours; the square
GDH assumption can be handled similarly to GDH. The one-
or two-user to n-user InsiderCCA and OutsiderAuth proofs
for the AKEM are similar to our OutsiderCCA case study.
More generally, our approach would also allow us to relate
CryptoVerif assumptions to EasyCrypt proofs for particular
cryptographic schemes (e.g. encryption modes).

A natural question is whether our translation from Cryp-
toVerif to EasyCrypt is sound. Given that the translation is
just an encoding of the CryptoVerif semantics in EasyCrypt,
we believe that doing a soundness proof on paper would not
be very insightful in itself. Having a mechanized semantics of
CryptoVerif and EasyCrypt and doing a mechanized soundness
proof would be more useful but would require a huge amount
of work, so it is out of scope of this paper.

Our translation covers most of the language that CryptoVerif
uses for specifying assumptions on cryptographic primitives.
In particular, it successfully translates all assumptions in
the standard library of primitives provided with CryptoVerif.
We still do not support pattern-matching with tuples in the
get construct, which was never used in the examples we
encountered, and could be added if needed. Another easy
extension would be to translate together several CryptoVerif
assumptions into one theory with a shared prelude, so that the
instantiation in EasyCrypt can be done all at once.

For future work, it would also be interesting to improve
EasyCrypt. The translation of the indistinguishability axiom
for GDH yields modules with 29 procedures. This exposes
a performance problem in EasyCrypt when dealing with
modules that have many procedures, and needs to be fixed.
Also the cost logic of EasyCrypt [4] needs to become more
expressive and useable. This would make it more reasonable
to also translate the probability formulas from CryptoVerif to
EasyCrypt.

Finally, another extension would be to translate not only the
language of cryptographic assumptions of CryptoVerif, but the
full language of games. This includes, for instance, sequences
of oracles to model protocols with several messages. Such
an extended translation would allow us to perform the most
automatic and straightforward parts of the proof of a protocol
in CryptoVerif, and to use EasyCrypt for more subtle game
transformations.

Acknowledgments: This work was partly done while
Christian Doczkal was at Université Côte d’Azur, Inria and
Pierre-Yves Strub was at École Polytechnique. This work
benefited from funding managed by the French National
Research Agency under the France 2030 programme with the
reference ANR-22-PECY-0006 (PEPR Cybersecurity SVP).

REFERENCES

[1] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, and D. Riepel,
“Analysing the hpke standard,” Cryptology ePrint Archive, Report
2020/1499, 2020, available at https://eprint.iacr.org/2020/1499.

http://cryptoverif.inria.fr
https://eprint.iacr.org/2020/1499

[2] ——, “Analysing the HPKE standard,” in Eurocrypt 2021, ser. Lecture
Notes in Computer Science, A. Canteaut and F.-X. Standaert, Eds., vol.
12696. Springer, Oct. 2021, pp. 87–116.

[3] D. Baelde, S. Delaune, A. Koutsos, C. Jacomme, and S. Moreau, “An
interactive prover for protocol verification in the computational model,”
in 42nd IEEE Symposium on Security and Privacy (S&P’21),. IEEE
Computer Society Press, May 2021, pp. 537–554.

[4] M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, and P. Strub, “Mech-
anized proofs of adversarial complexity and application to universal
composability,” in CCS ’21: 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds.
ACM, 2021, pp. 2541–2563.

[5] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in Advances in
Cryptology – CRYPTO 2011, ser. Lecture Notes in Computer Science,
P. Rogaway, Ed., vol. 6841. Springer, Aug. 2011, pp. 71–90.

[6] D. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-based
proofs in higher-order logic,” Journal of Cryptology, vol. 33, pp. 494–
566, 2020.

[7] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations among
notions of security for public-key encryption schemes,” in Advances in
Cryptology – CRYPTO 1998, ser. Lecture Notes in Computer Science,
H. Krawczyk, Ed., vol. 1462. Springer, Aug. 1998, pp. 26–45.

[8] M. Bellare and P. Rogaway, “The game-playing technique,” Cryptology
ePrint Archive, Report 2004/331, Nov. 2004, available at http://eprint.
iacr.org/2004/331.

[9] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 4, pp. 193–207, Oct.–Dec. 2008.

[10] ——, “Automatically verified mechanized proof of one-encryption key
exchange,” Cryptology ePrint Archive, Report 2012/173, Apr. 2012,
available at http://eprint.iacr.org/2012/173.

[11] ——, “Modeling and verifying security protocols with the applied pi
calculus and ProVerif,” Foundations and Trends in Privacy and Security,
vol. 1, no. 1–2, pp. 1–135, Oct. 2016.

[12] B. Blanchet, V. Cheval, and V. Cortier, “ProVerif with lemmas, induc-
tion, fast subsumption, and much more,” in IEEE Symposium on Security
and Privacy (S&P’22). IEEE Computer Society Press, May 2022, pp.
205–222.

[13] E. Bresson, O. Chevassut, and D. Pointcheval, “The group Diffie-
Hellman problems,” in Selected Areas in Cryptography, ser. Lecture
Notes in Computer Science, K. Nyberg and H. Heys, Eds., vol. 2595.
Springer, 2003, pp. 325–338.

[14] D. Cadé and B. Blanchet, “Proved generation of implementations from
computationally secure protocol specifications,” Journal of Computer
Security, vol. 23, no. 3, pp. 331–402, 2015.

[15] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann, “Sapic+:
protocol verifiers of the world, unite!” in USENIX Security Symposium
(USENIX Security), 2022, 2022.

[16] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: deciding equiv-
alence properties in security protocols theory and practice,” in 2018
IEEE Symposium on Security and Privacy (SP 2018). IEEE Computer
Society Press, 2018, pp. 529–546.

[17] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. IT-29, no. 12, pp. 198–208,
Mar. 1983.

[18] J. A. Donenfeld, “WireGuard: Next generation kernel network tunnel,”
in Network and Distributed System Security Symposium, NDSS, 2017.

[19] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and B. Parno, “OWL:
Compositional verification of security protocols via an information-flow
type system,” in 2023 IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society Press, May 2023, pp. 1114–1131.

[20] S. Kremer and R. Künnemann, “Automated analysis of security protocols
with global state,” Journal of Computer Security, vol. 24, no. 5, pp. 583–
616, 2016.

[21] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,”
Internet Requests for Comments, RFC Editor, RFC 7748, Jan. 2016.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7748.html

[22] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the WireGuard virtual private network protocol,” in IEEE
European Symposium on Security and Privacy (EuroS&P’19). IEEE
Computer Society, Jun. 2019, pp. 231–246.

[23] T. Okamoto and D. Pointcheval, “The gap-problems: a new class
of problems for the security of cryptographic schemes,” in Interna-
tional Workshop on Practice and Theory in Public Key Cryptography
(PKC’2001), ser. Lecture Notes in Computer Science, K. Kim, Ed., vol.
1992. Springer, Feb. 2001, pp. 104–118.

[24] A. Petcher and G. Morrisett, “The foundational cryptography frame-
work,” in 4th International Conference on Principles of Security and
Trust (POST’15), ser. Lecture Notes in Computer Science, R. Focardi
and A. C. Myers, Eds., vol. 9036. Springer, Apr. 2015, pp. 53–72.

[25] E. Rescorla, “The Transport Layer Security (TLS) protocol version 1.3,”
RFC 8446, https://www.rfc-editor.org/rfc/rfc8446, Aug. 2018.

[26] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis
of Diffie-Hellman protocols and advanced security properties,” in 25th
IEEE Computer Security Foundations Symposium (CSF’12). IEEE
Computer Society Press, Jun. 2012, pp. 78–94.

[27] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” Cryptology ePrint Archive, Report 2004/332, Nov.
2004, available at http://eprint.iacr.org/2004/332.

APPENDIX A
PROOF OF INEQUALITY ON THE BOUND

Lemma 1: Let L(A) = Game(LHS, A).main() @ &m and
R(A) = Game(RHS, A).main() @ &m. We have for all A,

|Pr[L(A) : res]− Pr[R(A) : res ∨ not unique]| ≤ ϵ(A) (1)

if and only if for all A,

Pr[L(A) : res] ≤ Pr[R(A) : res ∧ ¬not unique] + ϵ(A) (2)

provided ϵ(A) is unchanged by negating the result of A. (ϵ(A)
is typically a function of the runtime of A, the number of
calls A makes to oracles, and the length of messages passed
to oracles by A.)

Proof: (1)⇒ (2): By (1), we have

Pr[R(A) : res ∨ not unique]− Pr[L(A) : res] ≤ ϵ(A).

By negating the result of the adversary A, we have

Pr[R(A) : ¬res ∨ not unique]− Pr[L(A) : ¬res] ≤ ϵ(A).

Since the games are lossless, we obtain

1−Pr[R(A) : res∧¬not unique]−1+Pr[L(A) : res] ≤ ϵ(A)

and therefore

Pr[L(A) : res]− Pr[R(A) : res ∧ ¬not unique] ≤ ϵ(A),

which yields (2).
(2)⇒ (1): By (2), we have

Pr[L(A) : res] ≤ Pr[R(A) : res ∧ ¬not unique] + ϵ(A)

≤ Pr[R(A) : res ∨ not unique] + ϵ(A),

which yields

Pr[L(A) : res]− Pr[R(A) : res ∨ not unique] ≤ ϵ(A). (3)

To prove Pr[R(A) : res ∨ not unique] − Pr[L(A) : res] ≤
ϵ(A), we follow the same steps as in the part (1)⇒(2) in the
reverse order. By (2), we have

Pr[L(A) : res]− Pr[R(A) : res ∧ ¬not unique] ≤ ϵ(A).

Hence

1−Pr[R(A) : res∧¬not unique]−1+Pr[L(A) : res] ≤ ϵ(A)

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2012/173
http://www.rfc-editor.org/rfc/rfc7748.html
https://www.rfc-editor.org/rfc/rfc8446
http://eprint.iacr.org/2004/332

and, since the games are lossless, we have

Pr[R(A) : ¬res ∨ not unique]− Pr[L(A) : ¬res] ≤ ϵ(A).

By negating the result of the adversary A, we obtain

Pr[R(A) : res ∨ not unique]− Pr[L(A) : res] ≤ ϵ(A). (4)

Combining (3) and (4) yields (1).

APPENDIX B
CDH WITH RANDOM SELF-REDUCIBILITY

This proof extends the proof of [10, Appendix B] to nominal
groups. The proof of Lemma 2 is also modified to reflect the
EasyCrypt proof of that result.

We assume a nominal group N = (G,Z, g,DH , exp, ˆ,
mult, EU , f, inv) (see Section IV-C). First, let us rephrase the
two games:
LHS : One chooses random ai ←$ DH (i ∈ {1, . . . , na}) and

bj ←$ DH (j ∈ {1, . . . , nb}). The adversary is allowed
to query
• for group elements, via oracles OA and OB: OA(i)

returns exp(g, ai) and OB(j) returns exp(g, bj);
• for discrete logarithms, via oracles Oa and Ob: Oa(i)

returns ai (at most qa ≤ na queries), Ob(j) returns bj
(at most qb ≤ nb queries);

• for Diffie-Hellman decisions, via oracle DDH(m, i, j)
(at most qddh queries) which check whether m =
exp(g, aibj).

RHS : One chooses random ai and bj as in the LHS. The
adversary is allowed to query oracles
• OA, OB, Oa, and Ob, that answer as above;
• DDH(m, i, j), which returns the correct answer m =
exp(g, aibj) if either ai or bj has been asked before
for an Oa or Ob query. Otherwise, it returns is ’false’.

Furthermore, the variables ai and bj are marked
[unchanged], so in both games, these variables are
given to the adversary after the interaction with these oracles.

We thus insist on the fact that the 2 games differ on
DDH(m, i, j) Diffie-Hellman decisions queries, if neither ai
nor bj has been asked before for an Oa or Ob query. In the
first game, the answer is the correct one; in the second game,
the answer is always ’false’.

To bound the probability of distinguishing these two games,
we bound the probability that an event bad is executed, which
happens as soon as a query gives a different result in the two
games. Hence we define the following game G: the adversary
is allowed to query oracles
• OA, OB, Oa, and Ob, that answer as above;
• DDH(m, i, j), which returns m = exp(g, aibj) if ai or bj

has been asked before for an Oa or Ob query. Otherwise,
if m = exp(g, aibj), then it executes event bad; it returns
’false’.

The probability of distinguishing LHS from RHS is then at
most the probability ε of event bad in G. Since the variables
ai and bj are given to the adversary after the execution of event

bad, giving those variables does not change the probability of
bad.

Let us define a game G′ that runs as G except that it chooses
ai and bj according to the uniform distribution DU on EU
instead of DH . The probability of distinguishing DU from
DH is ∆N . Hence, the probability of distinguishing G′ from
G is at most (na + nb)∆N . So G′ executes event bad with
probability ε′ ≥ ε− (na + nb)∆N .

Let us be given a CDH tuple (X = exp(g, x), Y =
exp(g, y)) with x ←$ EU , y ←$ EU for which we want to
compute Z = exp(g, xy). We provide a simulator B for this
game:

For i ∈ {1, . . . , na}, one chooses a random bit γi with bias
pa: with probability pa, γi = 1, and with probability 1 − pa,
γi = 0. If γi = 1, choose αi ←$ EU and set Ai = Xαi (and
thus we have ai = αix but the simulator cannot compute ai
because it does not know x). If γi = 0, choose αi ←$ EU and
set ai = αi and Ai = exp(g, αi).

For j ∈ {1, . . . , nb}, one chooses a random bit δj with bias
pb: with probability pb, δj = 1, and with probability 1 − pb,
δj = 0. If δj = 1, choose βj ←$ EU , and set Bj = Y βj (and
thus bj = βjy). If δj = 0, choose βj ←$ EU , and set bj = βj

and Bj = exp(g, βj).

• OA(i) returns Ai;
• OB(j) returns Bj ;
• For the query Oa(i), if γi = 0, then return αi. Otherwise,

the simulation stops;
• For the query Ob(j), if δj = 0, then return βj . Otherwise,

the simulation stops.
• For the query DDH(m, i, j),

– if one of the ai or bj has been asked an Oa or Ob-
query (and did not stop the simulation), which means
that either γi = 0 or δj = 0, then one can either test
whether m = Bαi

j or not, or whether m = A
βj

i or not,
and provide the correct answer;

– otherwise, we answer ’false’.
Since there are at most qa Oa queries and qb Ob queries,
with probability at least (1 − pa)

qa(1 − pb)
qb , the simulation

does not stop and is perfectly indistinguishable from G′, for
the following reason. Let GU be the distribution of exp(g, y)
where y is chosen uniformly in EU . Let GR(x) be the distribu-
tion of elements rerandomized from x, that is, the distribution
of exp(g, xy) where y is chosen uniformly in EU . Using
Property 4 of nominal groups, we have that GU = GR(x) for
all x ∈ EU , because, by injectivity of ϕ, GU is the uniform
distribution on the image of ϕ, and by injectivity of ϕx, GR(x)
is the uniform distribution on the image of ϕx; moreover
ϕ and ϕx have the same image. Since GU = GR(x), the
distribution of Ai in the simulation when γi = 1 is the same
as the distribution of Ai in G′. The situation is similar for Bj

and from that it is easy to see that the games are perfectly
indistinguishable.

The event bad is executed if for one DDH query, m =
exp(g, aibj) but neither ai or bj has been asked for an Oa
or Ob query. Since event bad is executed with probability ε′

in game G′, then in the simulation, such a critial DDH query
happens with probability at least ε′(1− pa)

qa(1− pb)
qb .

Let us randomly choose k between 1 and qddh, and bet that
the k-th DDH query is the first critical one, which is true with
probability 1/qddh.

For this query, with probability papb, both γi = 1 and
δj = 1, m = exp(g, aibj) = exp(g, αixβjy) = Zαiβj ,
and this query leads to the expected Z value, by computing
Z = minv(αi)inv(βj).

This means that our simulator B achieves SuccCDH
N (B) ≥

(1− pa)
qa(1− pb)

qbε′papb/qddh so

ε′ ≤ qddh × SuccCDH
N (B)

(1− pa)qa(1− pb)qbpapb
.

Lemma 2: For all n ∈ N, there exists x ∈ [0, 1] such that

1

x(1− x)n
≤ f(n)

where f(n) = 1 + γn with γ = 3.
Proof: Two cases appear for the function x 7→ 1/(x(1−

x)n):
• if n = 0, then the minimum is 1, for x = 1;
• if n ≥ 1, then the minimum is reached for x = 1/(n+1),

and its value is (n+1)n+1

nn .
Let

h(0) = 1 and h(n) =
(n+ 1)n+1

nn
for n ≥ 1.

By choosing the right value of x, we have 1/(x(1 − x)n) ≤
h(n). We are going to show that h(n) ≤ f(n) for all n ≥ 0.
For information, we have for n ≥ 1,

h(n)

n
=

(
1 +

1

n

)n+1

→ e

when n tends to +∞ and for n ≥ 0,

en ≤ h(n) ≤ max (1, 4n)

h(n) ≤ e(n+ 1).

The first inequality holds because for n ≥ 1, h(n)
n =(

1 + 1
n

)n+1
is monotonically decreasing, tends to e when n

tends to +∞, and evaluates to 4 for n = 1.
The second inequality holds because for n ≥ 1, h(n)

n+1 =(
1 + 1

n

)n
is monotonically increasing and tends to e when n

tends to +∞.
We could use one of the bounds given by these two

inequalities. However, the bound given by the first inequality
is always larger than f(n), so less precise than the bound given
by the lemma. The bound given by the second inequality is
best for large n, however it is not precise for small n. We
believe that the bound given by the lemma yields a better
compromise for all n.

To show the lemma, we just have to show that, for all n ≥ 1,
h(n) ≤ f(n). Let g(n) = f(n)

h(n) The value of γ is chosen
such that g(1) = 1. Hence it is sufficient to show that g is

monotonically increasing, that is, for all n ≥ 1, g(n + 1) ≥
g(n). We have

g(n+ 1) = g(n)
f(n+ 1)

f(n)

n

n+ 2

(
(n+ 1)2

n(n+ 2)

)n+1

so it suffices to show that

1 ≤ f(n+ 1)

f(n)

n

n+ 2

(
(n+ 1)2

n(n+ 2)

)n+1

.

Binomial expansion gives us

1 +
n+ 1

n(n+ 2)
+

n+ 1

2n(n+ 2)2
≤

(
(n+ 1)2

n(n+ 2)

)n+1

.

Finally, expanding everything, we obtain

f(n+ 1)

f(n)

n

n+ 2

(
1 +

n+ 1

n(n+ 2)
+

n+ 1

2n(n+ 2)2

)
=

6n5 + 38n4 + 85n3 + 75n2 + 20n

6n5 + 38n4 + 84n3 + 72n2 + 16n

which is greater than 1 for all n ≥ 1 thus completing the proof
of the desired result.

Additionally, let us evaluate how precise the bound is. For
that, we evaluate the limit of g(x) when x tends to +∞. We
have

ln (g(x)) = ln

(
f(x)

γx

)
+ ln(γx) +

ln(1) + x ln(x)− (x+ 1) ln(x+ 1)

= ln

(
f(x)

γx

)
+ ln(γ)− (x+ 1) ln

(
x+ 1

x

)
∼ ln(γ)− x

1

x
→ ln(γ)− 1

when x tends to +∞. Therefore, for all n ≥ 1, we have
0 ≤ ln(g(n)) < ln(γ)− 1, hence for all n ≥ 0,

1 ≤ f(n)

h(n)
<

γ

e
.

For γ = 3, γ
e = 3

e < 1.104. Hence, the loss coming from
the replacement of h(n) with f(n) is less than 10.4%. That
is remarkably precise given that the formula f(n) is much
simpler than h(n).

By Lemma 2, we can choose pa and pb above so that
1

(1−pa)qapa
≤ f(qa) and 1

(1−pb)
qbpb
≤ f(qb), so

ε′ ≤ qddh(3qa + 1)(3qb + 1)SuccCDH
N (B).

Hence

ε ≤ qddh(3qa + 1)(3qb + 1)SuccCDH
N (B) + (na + nb)∆N .

We can further notice that the simulator B takes approximately
the same time as the adversary against the initial game. More
precisely, it computes at most na + nb + qddh + 1 additional
exponentiations.

	Introduction
	Background on EasyCrypt
	Translation From CryptoVerif to EasyCrypt
	IND-CPA Security
	IND-CCA2
	Other Features
	Arguments of Oracles used as Indices
	unchanged
	events

	Case Studies
	IND-CCA2
	OutsiderCCA Security for Authenticated KEMs
	Computational Diffie-Hellman assumption
	Gap Diffie-Hellman assumption

	Conclusion
	References
	Appendix A: Proof of inequality on the bound
	Appendix B: CDH with Random Self-Reducibility

