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Abstract—CryptoVerif is a mechanized security protocol verifier
sound in the computational model. In this paper, we explore
and extend its treatment of dynamic key compromise. First,
we present a basic treatment of compromise and explain its
limitations. Next, we introduce several extensions in order to
remove these limitations: improved proof of secrecy; building
different proofs for the various properties to prove; removing
code that cannot be executed when the adversary breaks the
desired security properties; and guessing tested sessions, values,
and branches. We illustrate how these extensions improve the
treatment of key compromise on protocols ranging from toy
examples to filling gaps in previous large case studies including
TLS 1.3 and the WireGuard VPN protocol.

Index Terms—security protocols, computational model, mecha-
nized proofs, key compromise

I. INTRODUCTION

A first step in the verification of a security protocol can be
to consider all principals as honest. However, this is rather
weak. One generally considers that honest principals may talk to
compromised principals, that is, dishonest principals, controlled
by the adversary, and one aims to prove security for sessions
between honest principals. This is called static compromise
because the status of a principal (honest or compromised)
does not evolve over time. For instance, static compromise is
needed to discover the well-known man-in-the-middle attack
against the Needham-Schroeder public key protocol [41]. Going
further, one can consider dynamic compromise: a principal that
is initially honest may get compromised at some point, for
example because its machine has been successfully attacked,
which gives the adversary access to the long-term secret keys
stored on that machine. In this case, one typically aims to
prove security for sessions executed before the compromise.
Forward secrecy is a typical property proved in this case: the
messages exchanged in a session remain secret even if the
long-term keys of the principals involved in that session are
later compromised.

Considering dynamic compromise obviously complicates
security proofs. In this paper, we present and extend the treat-
ment of dynamic compromise in the protocol verification tool
CryptoVerif [18]. This tool relies on the computational model
of cryptography [52], which is typically used in the manual
proofs of cryptographers, and in which messages are bitstrings,
the cryptographic primitives are functions from bitstrings to
bitstrings, and the adversary is a probabilistic Turing machine.
CryptoVerif produces game-based proofs [14], [50], like those

of cryptographers: starting from the initial game representing
the protocol to prove in interaction with an adversary, it uses
game transformations to generate a sequence of games such
that, in the final game, the desired security properties can be
proved just by looking syntactically at the game, without using
any cryptographic assumption. All game transformations of
CryptoVerif are such that, if the security properties are satisfied
in the transformed game, then they are also satisfied in the
game before transformation. (In most cases, this is because the
transformed game is computationally indistinguishable from the
game before transformation. However, this is not always true,
for instance in the guessing transformation that we introduce in
Section V-C.) We can then prove the security properties in the
initial game. The applied game transformations are determined
either by an automatic proof strategy [18] or by user guidance:
in interactive mode, the user gives commands to CryptoVerif
to tell it which game transformation to apply. Examples
of commands include crypto ⟨cryptographic assumption⟩,
which tells CryptoVerif to apply the specified cryptographic
assumption, and simplify, which tells CryptoVerif to simplify
the current game as much as it can. CryptoVerif generates the
game after the transformation specified by the given command.
CryptoVerif proofs can be interpreted in two ways. First, the
proved security properties hold asymptotically, that is, the
adversary has a negligible probability of breaking the proved
security properties, where the length of keys is determined by
a security parameter, the adversary is a probabilistic Turing
machine that runs in time polynomial in the security parameter,
and negligible means asymptotically smaller than all inverses
of polynomials in the security parameter. Second, CryptoVerif
also provides an explicit formula that bounds the probability of
breaking the security properties, as a function of the probability
of breaking the cryptographic primitives. This is the exact
security framework. To simplify the exposition, in this paper,
we only consider the asymptotic framework. The details of the
computation of probabilities in the exact security framework
can be found in the companion technical report [22].

Our contributions deal with the treatment of dynamic key
compromise in CryptoVerif. They can be summarized as
follows. First, we present a basic treatment of compromise
(Section II), which was already used in previous case studies
but never explained in detail. Interestingly, this approach does
not require any modification of the tool CryptoVerif itself: only
the assumptions on primitives are modified. We also present



the limitations of this approach, and ideas on how to remove
them. Next, after recalling the definitions of security properties
proved by CryptoVerif (Section III), we show how CryptoVerif
proves these properties, extending the proof of secrecy in
a way useful for dealing with compromise (Section IV). In
Section V, we present new commands that users can use to
guide the proof and that allow us to remove the limitations
of the basic treatment of compromise: focusing on the proof
of certain properties; removing code that cannot be executed
when the adversary breaks the desired security properties, which
allows us to remove the compromise of keys in suitable cases;
guessing values, and in particular guessing the tested session.
The latter transformation is often used in cryptographic proofs,
not necessarily related to compromise, but we apply it in
situations related to compromise. Finally, in Section VI, we
apply these new commands to several case studies. In particular,
we fill gaps in two important previous case studies [16], [39]
by showing forward secrecy with respect to the compromise
of the pre-shared key for the PSK-DHE (pre-shared key and
Diffie-Hellman) handshake of TLS 1.3 Draft 18 [47], which is
close to the final version of TLS 1.3 [48], and for the VPN
protocol WireGuard [32] integrated in the Linux kernel.

The new commands are implemented in CryptoVerif version
2.07 available at https://cryptoverif.inria.fr. CryptoVerif consists
of 68000 lines of OCaml. Additional details on the game
transformations and proofs for all results can be found in the
companion technical report [22]. The CryptoVerif files for all
examples and case studies are available at https://cryptoverif.
inria.fr/compromise/.

Related Work: Many other protocol verification tools
can deal with the dynamic compromise of keys. At the
symbolic level, Scyther [31] has a specific version to deal
with compromise [9], [11]. Other tools deal with compromise
without specific publications on it. For instance, Tamarin [49]
can specify forward secrecy for x by executing a Secret(x)
event and requiring that the arguments of Secret events remain
secret provided some principals have not been compromised
before the Secret event. ProVerif [20] considers scenarios with
stages [23, Section 8]: the protocol is executed in a first stage
and the key is compromised in a second stage. This modeling
does not catch attacks in which the compromise happens in
the middle of a session. All these tools rely on the symbolic
model of cryptography, in which cryptographic primitives are
considered as ideal blackboxes and the adversary is restricted to
apply only a fixed set of these primitives. Hence, the obtained
security results are weaker than in the computational model, in
which the adversary can be any probabilistic Turing machine. In
particular, the symbolic model does not catch attacks that rely
on weaknesses of the primitives (e.g. weaknesses of encryption
in SSH [2]) unless these weaknesses are explicitly modeled,
which may require knowing the attack in advance.

At the computational level, EasyCrypt [8] focuses more on
cryptographic primitives and schemes than on protocols. It has
still been used for proving some protocols such as one-round
key exchange [7], e-voting [30], multiparty protocols in the
honest-but-curious model [51], AWS key management [3], and

distance bounding [25]. In particular, [7] proves forward secrecy
for one-round key exchange protocols. The proof strategy dif-
fers from the one we use in CryptoVerif: it uses case distinctions
depending on the compromise scenarios in [7, Theorem 1]
instead of introducing explicit events for authentication before
compromise as we do in Section V. We are confident that
the frameworks for cryptographic proofs in Coq, FCF [44],
SSProve [35], and in Isabelle, CryptHOL [10], could deal
with dynamic corruption in security protocols, although to
our knowledge they have been used to prove schemes and
protocols (HMAC [45], searchable symmetric encryption [15]
for FCF; ElGamal, PRF-based encryption, KEM-DEM public
key encryption, and sigma protocols for SSProve; oblivious
transfer [28], sigma protocols and commitment schemes [29]
for CryptHOL) but no key exchange protocol so far. Indeed,
like EasyCrypt, they can perform more subtle reasoning than
CryptoVerif, at the cost of more user effort: the user has
to give all games and guide the proof that the games are
indistinguishable. That becomes tedious for large protocols,
which require many large games. In the tool Squirrel [5], the
treatment of forward secrecy is work in progress (personal
communication). Squirrel relies on a logic that allows it to use
symbolic techniques and be computationally sound. Still, it
currently proves a security notion weaker than the standard
one: the number of sessions of the protocol must be bounded
independently of the security parameter (instead of being
polynomial in the security parameter). For instance, a protocol
that leaks one bit of a key in each session is then considered
not to leak the whole key, because for a fixed number of
sessions, the adversary learns a fixed number of bits of the
key; when the security parameter is large enough, the length
of the key, which is typically proportional to the security
parameter, becomes longer than that fixed number of bits. The
tool OWL [33] supports static corruptions and a limited form
of forward secrecy: the adversary has to commit in advance to
the point in time where compromise happens [33, Section 3.4].

Pen-and-paper proofs also deal with dynamic compromise;
our work mechanizes these techniques in the tool CryptoVerif.
In particular, in the universal composability framework, the
approach of [37], which allows dynamic corruption of a signing
key inside an ideal functionality, is fairly similar to our basic
treatment of compromise in CryptoVerif (Section II). Our more
advanced treatment of compromise (Section V) implements in
CryptoVerif a way of dealing with dynamic compromise also
used in game-based proofs, e.g., the one of [27, Appendix D].

II. BASIC TREATMENT OF COMPROMISE

The simplest way to deal with the dynamic compromise of
keys in CryptoVerif is to include the possibility to compromise
the keys in the assumptions on the cryptographic primitives
themselves. We illustrate this approach on the example of
ciphertext integrity for a symmetric encryption scheme. This
assumption is given in beautified CryptoVerif syntax in Fig-
ure 1, with minor simplifications (e.g., we omit proof strategy
indications), and explained below.



1 equiv(int ctxt corrupt(enc))
2 new k : key; (
3 !i≤nOenc(x : cleartext) :=
4 new r : enc seed; return(enc r(x, k, r)) |
5 !i

′≤n′
Odec(y : ciphertext) :=

6 return(dec(y, k)) |
7 Ocorrupt() := return(k))
8 ≈
9 new k : key; (

10 !i≤nOenc(x : cleartext) :=
11 new r : enc seed; let z : ciphertext = enc r(x, k, r)
12 in return(z) |
13 !i

′≤n′
Odec(y : ciphertext) :=

14 if defined(corrupt) then return(dec(y, k)) else
15 find j ≤ n suchthat defined(x[j], z[j]) ∧ z[j] = y
16 then return(injbot(x[j])) else return(bottom) |
17 Ocorrupt() := let corrupt : bool = true in return(k)).

Fig. 1. Ciphertext integrity with dynamic compromise of keys

We consider an encryption scheme that defines a proba-
bilistic encryption function. In CryptoVerif, this function is
represented by a deterministic function enc r that takes as
argument the cleartext, the key, and random coins r, and
returns the corresponding ciphertext. The random coins r
represent the probabilistic choices made during encryption. The
decryption function dec is deterministic; it takes as argument a
ciphertext and a key. It returns the special symbol bottom when
decryption fails, and the cleartext when decryption succeeds.
The result type of dec is then bitstringbot, representing the
union of bitstrings and bottom. Then we have:

dec(enc r(x, k, r), k) = injbot(x) (1)

where injbot is the canonical injection from the set of cleartexts
cleartext to bitstringbot, which maps a cleartext to itself. This
function is needed for the equality (1) to typecheck. This
equality expresses that, when one decrypts a ciphertext with the
correct key k, decryption succeeds and returns the cleartext x.

Ciphertext integrity means that, assuming a random key k,
an adversary that has access to an encryption oracle under k
and an oracle that tests whether decryption with k succeeds
has a negligible probability of forging a valid ciphertext,
that is, computing a ciphertext that has not been returned
by the encryption oracle and that correctly decrypts. A formal
definition can be found in [13].

CryptoVerif requires all assumptions on primitives to be
specified as indistinguishability properties between two games:
L ≈ R, meaning that the adversary has a negligible probability
of distinguishing L from R. CryptoVerif uses such assumptions
by replacing L with R inside a bigger game. Therefore, the
definition of Figure 1 is of this form. Line 1 just gives the
name of the property: int ctxt means “ciphertext integrity”;
corrupt refers to the version of the property that supports
dynamic corruption of the key. Lines 2 to 7 define the game
L, lines 9 to 17 define the game R.

In each game, we first choose a random key k in the set key
by new k : key. Then we provide 3 oracles to the adversary:
the encryption oracle Oenc, the decryption oracle Odec, and
the corruption oracle Ocorrupt. The encryption oracle can be
called at most n times, as specified by the replication !i≤n. The
index i is called a replication index and ranges over {1, . . . , n},
which we also write [1, n] for simplicity. Replication bounds
such as n are polynomial in the security parameter. Similarly,
the decryption oracle can be called at most n′ times. The
encryption oracle generates fresh coins r and encrypts the
received cleartext x using these coins. In R, it additionally
stores the ciphertext in variable z (line 11). In CryptoVerif, all
variables defined under !i≤n are implicitly arrays indexed by
the replication index i ∈ [1, n]. In particular, in R, the call to
Oenc with index i stores the cleartext in x[i] and the ciphertext
in z[i]. The corruption oracle returns the key k to the adversary.
In R, it additionally defines a variable corrupt to record that
the key has been corrupted. In L, the decryption oracle Odec
simply decrypts using the function dec. In R, it distinguishes
several cases. If the key has been corrupted, it just decrypts
using dec (line 14). We cannot apply ciphertext integrity in
this case. Otherwise, it looks for an index j such that x[j] and
z[j] are defined and z[j] = y. This condition means that oracle
Oenc has been called with index j, and that the ciphertext it
returned, z[j], is the same as the one given to the decryption
oracle, y (find construct, line 15). In this case, by (1), the
result of decryption is injbot(x[j]). Finally, when no call to
Oenc returned y, by ciphertext integrity, decryption must fail,
hence Odec returns bottom.

In other words, the games L and R can be distinguished
if and only if Odec returns bottom in its last case in R and
decryption succeeds in the corresponding call to Odec in L.
That corresponds exactly to breaking ciphertext integrity, hence
the probability of distinguishing L from R is negligible when
the encryption scheme satisfies ciphertext integrity.

Thanks to the presence of oracle Ocorrupt, this property can
be applied by CryptoVerif even if the key k is corrupted at some
point. Obviously, the property brings useful information only
when k is not corrupted yet when we decrypt. The version that
does not deal with corruption would remove oracle Ocorrupt
and line 14; with this version, the key k must never be corrupted
for the property to be applicable.

Although it was not detailed in previous papers, this
assumption with corruption was used in the case study of
WireGuard [39] and similar assumptions including corruption
were used for one-wayness in [24] and for the unforgeability of
signatures in the case studies of TLS 1.3 [16], of Signal [36],
and of the fixed ARINC823 public key protocol of [21].

However, this approach has important limitations:
• This approach works for computational assumptions on

primitives, that is, assumptions that express that an
adversary cannot compute some value (when the key
is not compromised). Such assumptions are exploited
before the compromise of a key; that remains valid even
if the key is compromised in the future. For instance, we
can exploit ciphertext integrity to say that the adversary



cannot forge a ciphertext before the encryption key is
compromised, even if that key is compromised later.
Examples of computational properties include ciphertext
integrity, unforgeability for signatures [34] and MACs [13],
the computational and gap Diffie-Hellman assumptions
(CDH and GDH) [42]. However, this approach does not
work for decisional assumptions, that is, assumptions
that express that the adversary cannot distinguish two
games (when the key is not compromised). If the key
is compromised later, the adversary becomes able to
distinguish the two games in question, so we cannot
replace the first game by the second one. Examples of
decisional properties include IND-CPA, IND-CCA2 for
encryption [12], the decisional Diffie-Hellman (DDH)
assumption [42], and the pseudo-random function oracle
Diffie-Hellman (PRF-ODH) assumption [26].

• This approach also does not work when the compromised
“key” k is used as argument in a sequence of key
derivations using hash functions, for instance modeled
as random oracles. In this case, k is not directly used in
key position in a primitive. We cannot replace the derived
key with a random key, because the derived key becomes
distinguishable from a random key if k is compromised in
the future. This situation happens when k is the pre-shared
key in the TLS 1.3 and WireGuard protocols: previous
studies of these protocols [16], [39] were unable to prove
forward secrecy with respect to the compromise of the
pre-shared key in CryptoVerif.

• It does not allow proving in CryptoVerif properties such
as the ciphertext integrity with compromise of keys shown
in Figure 1 from assumptions that do not allow key
compromise. Such proofs would have to be done manually
or using another mechanized prover.

In this paper, we show how to remove all these limitations,
thanks to extensions that we have implemented in CryptoVerif.
Informally, the main idea will be to proceed in two steps.
First, we prove an authentication property, assuming the key
is not compromised until the end of the session. When a
principal is authenticated, that remains true even if a key is
compromised later, so, due to the nature of the authentication
property, it is enough to prove it without considering the key
compromise at all. As a second step, we use that property
to prove other properties, including secrecy, in the presence
of key compromise. We introduce new commands needed for
this approach in Section V, and apply them to case studies in
Section VI.

III. SECURITY PROPERTIES

A. Preliminaries

The cryptographic games are represented by processes in a
probabilistic process calculus detailed in [22, Section 2]. The
semantics of this process calculus is defined by a probabilistic
reduction relation on semantic configurations. A trace Tr of a
process Q is a sequence of reductions in this relation, starting
from the initial configuration associated to Q. A trace is full

when its last configuration cannot be reduced. All processes
run in polynomial-time in the security parameter, because
replication bounds and the size of messages are polynomial in
the security parameter and the runtime of all function symbols
is polynomial in the size of their arguments.

We denote by φ a trace property, that is, a function from
traces to {true, false}. We say that Tr satisfies φ, and we write
Tr ⊢ φ, when φ(Tr) = true. We write Pr[Q : φ] for the total
probability of all full traces of Q that satisfy φ.

The processes may execute events e with bitstring arguments
a1, . . . , am, written e(a1, . . . , am), by the instructions event
e(M1, . . . ,Mm) and event abort e. The latter instruction
executes an event e without argument and aborts the game. As
shown below, events are used for defining security properties. A
distinguisher D is a particular trace property that only depends
on the sequence of executed events: Tr ⊢ D if and only if
Ev ⊢ D, that is, D(Ev) = true where Ev is the sequence of
events executed in Tr . When e is an event, we write e for the
distinguisher that is true when event e is executed. For instance,
Pr[Q : e] is the probability that the process Q executes event e.

The adversary against a process Q is represented by an
evaluation context C, which is basically the adversarial process
Q′ in parallel with a hole [ ], written Q′ | [ ] or [ ] | Q′. We write
C[Q] for the context C in which the hole has been replaced with
Q, representing the adversarial process Q′ running in parallel
with Q. An evaluation context C is said to be acceptable for Q
with public variables V when it satisfies syntactic conditions
that allow the combination C[Q] (defined in [22, Section 2.7,
Definition 5]) and C has read access to variables defined in
Q that are in the set V (via the find construct mentioned in
Section II).

B. Secrecy

Let us define the secrecy properties proved by CryptoVerif,
introduced in [18, Section 4]. Consider a variable x, an array
indexed by the indices of replications above the definition of
x. We define two secrecy properties for x: one-session secrecy,
1-ses.secr.(x), intuitively means that each array cell of x is
indistinguishable from a uniformly distributed random value;
secrecy, Secrecy(x), means that the array x is indistinguishable
from independent uniformly distributed random values. In
particular, one-session secrecy allows several array cells of x to
be always equal, while secrecy does not. Secrecy corresponds
to the “real-or-random” definition of security [1].

To define these notions formally, we define test processes
Qsp , where sp is 1-ses.secr.(x) or Secrecy(x), explained
below.

Q1-ses.secr.(x) =

cs0();new b : bool ; cs0⟨⟩;
(cs(u1 : [1, n1], . . . , um : [1, nm]);

if defined(x[u1, . . . , um]) then

if b then cs⟨x[u1, . . . , um]⟩ else new y : T ; cs⟨y⟩
| c′s(b′ : bool); if b = b′ then event abort S else

event abort S)



where the channels cs0, cs, c′s, the events S, S, and the variables
u1, . . . , um, y, b, b

′ do not occur in Q nor in the public variables
V , and the variable x has indices of types [1, n1], ..., [1, nm]
and its value is of type T .

When the adversary sends a message on channel cs0, the
process Q1-ses.secr.(x) receives it by the input cs0(), chooses
a random boolean b by new b : bool , and returns control to
the adversary by outputting on cs0 by the output cs0⟨⟩. Then,
it allows the adversary to perform one test query on indices
u1, . . . , um, by sending these indices on channel cs. When
x[u1, . . . , um] is not defined, this query fails; otherwise, when
b = true, it returns x[u1, . . . , um] on channel cs and when b =
false, it returns a fresh random value y on channel cs. Finally,
the process Q1-ses.secr.(x) allows the adversary to provide a
boolean b′ on channel c′s and executes event S when b = b′ and
event S otherwise. After executing S or S, it aborts the game.
Intuitively, the goal of the adversary is to guess b, that is, find
whether the test query returned the real value x[u1, . . . , um]
or a random value. The boolean b′ is the adversary’s guess for
the value of b.

The process QSecrecy(x) is similar to Q1-ses.secr.(x) but allows
the adversary to perform several test queries that return
x[u1, . . . , um] when b = true and consistent random values
when b = false, that is, when b = false, if the indices
u1, . . . , um have already been queried, then the test query
returns the previous answer, else it returns a fresh random
value. The CryptoVerif code for this process is given in [22,
Section 2.7.1].

Definition 1 ((One-session) secrecy): Let Q be a process, x
a variable, and V a set of variables. Let sp be 1-ses.secr.(x)
or Secrecy(x).

The process Q satisfies sp with public variables V (x /∈ V )
when, for all evaluation contexts C acceptable for Q | Qsp

with public variables V that do not contain S nor S, Pr[C[Q |
Qsp ] : S]− Pr[C[Q | Qsp ] : S] is negligible. ◁

Intuitively, when Q satisfies sp, the adversary has a negligible
probability of guessing b, that is, of distinguishing whether the
test process Qsp outputs the value of the secret x (b = true)
or a random value (b = false).

C. Correspondences

Correspondences are used to model authentication. They are
properties of the form “if some events have been executed, then
some other events have been executed”. Here, correspondences
are logical formulas of the form ∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ, where
the variables x̃ are the variables of ψ, T̃ are their types, the
variables ỹ are the variables of ϕ that do not occur in ψ, and
T̃ ′ are their types. We use the following logical formulas ϕ:

ϕ ::= formula
M term
event(e(M1, . . . ,Mm)) (non-injective) event
inj-event(e(M1, . . . ,Mm)) injective event
ϕ1 ∧ ϕ2 conjunction
ϕ1 ∨ ϕ2 disjunction

Terms M,M1, . . . ,Mm in formulas are built from variables
in x̃ and ỹ and function applications; the variables in x̃ and
ỹ are distinct from variables of processes. Formulas denoted
by ψ are conjunctions of (injective or non-injective) events.
(Correspondences have been introduced in CryptoVerif in [17],
with a syntax with implicit quantifiers ψ ⇒ ϕ, meaning ∀x̃ :
T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ with x̃, ỹ, T̃ , and T̃ ′ as above. Many input
files of CryptoVerif still use that syntax.)

The formal definition of correspondences is given in [22,
Section 2.7.3]; we give intuition here. We say that a sequence of
events (executed by a trace) satisfies event(e(M1, . . . ,Mm))
when the event e(M1, . . . ,Mm) occurs in the sequence. A
term M is satisfied when it evaluates to true. As usual, ϕ1∧ϕ2
is satisfied when ϕ1 and ϕ2 are both satisfied, and ϕ1 ∨ ϕ2 is
satisfied when ϕ1 or ϕ2 is satisfied. Let us consider as security
property sp the correspondence ∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ. When
sp does not contain injective events, a sequence of events
satisfies sp when, for all values of x̃, if it satisfies ψ, then
there exist values of ỹ such that it also satisfies ϕ. When sp
contains injective events, one additionally requires that each
occurrence of the injective events in ψ in the sequence is
mapped to a distinct occurrence of the injective events in ϕ in
the sequence.

Example 1: Consider a protocol with two participants A
and B, and suppose that A executes event eA(x) when it
starts the protocol with nonce x, and B executes event eB(x)
when it finishes the protocol with nonce x. In order to model
authentication of A to B, we want to prove that when B
finishes the protocol, it is sure that A has started the protocol,
and that they agree on the value of the nonce x. This property
can be modeled by the correspondence

∀x : nonce; event(eB(x))⇒ event(eA(x)) (2)

which means that for all x of type nonce, if eB(x) has been
executed, then eA(x) has been executed.

However, this property models a weak form of authentication:
there can be many executions of eB(x) even if event eA(x)
was executed once, that is, A started the protocol only once.
In other words, B is not protected against replays. In order
to guarantee that B is protected against replays, we need to
prove the following injective correspondence

∀x : nonce; inj-event(eB(x))⇒ inj-event(eA(x)) (3)

which means that each execution of eB(x) corresponds to a
distinct execution of eA(x): if there are n executions of eB(x),
then there are at least n executions of eA(x). In other words,
each execution of B corresponds to a distinct execution of A,
with the same nonce. ◁

Definition 2: Let sp be a correspondence. The process Q
satisfies sp with public variables V when, for all evaluation
contexts C acceptable for Q with public variables V that do
not contain the events used by sp, Pr[C[Q] : ¬sp] is negligible.
◁

A process satisfies sp when the probability that it generates
a sequence of events Ev that does not satisfy sp is negligible,
in the presence of an adversary represented by the context C.



IV. PROVING SECURITY PROPERTIES

In order to prove security properties, CryptoVerif first
transforms the initial game (the protocol interacting with an
adversary), yielding a sequence of games, then it proves the
property itself on the final game. In this section, we explain
how CryptoVerif performs this final proof.

In addition to the proof of secrecy and correspondence
properties explained below, CryptoVerif can also prove indis-
tinguishability between two games G1 and G2 by transforming
both games into the same game G3, using two sequences of
games starting from G1, resp. G2.

A. Reasoning on Games

CryptoVerif relies on two algorithms in order to reason on
games. First, it collects a set Fµ of facts that hold at each
program point µ in the current game Q0. In particular, we
use the following facts: the boolean term M means that M
evaluates to true; defined(M) means that M is defined (all
array accesses in M are defined). In sets of facts, all terms
M must be simple, that is, contain only replication indices,
variables, and function applications. For instance, if the current
game Q0 contains if M then P else P ′ and the program
point µ is inside P , then M ∈ Fµ, since the then branch can
be executed only when M is true; similarly, if µ is inside P ′,
then ¬M ∈ Fµ. We do not detail the full computation of Fµ

since previous versions of this algorithm were already presented
in [18, Appendix C.2] and [17, Appendix B.2]. The current
algorithm is an extension that relies on the same principles.

The second algorithm is an equational prover: from a set of
facts F , this equational prover tries to derive a contradiction
by rewriting terms, using an algorithm inspired by Knuth-
Bendix completion. It also eliminates collisions between
independent random values: for instance, suppose F contains
the equality na = nb where na and nb are two nonces chosen
independently and uniformly in a large set nonce , where large
means that 1/|nonce| is negligible; the equality na = nb
holds only when the two nonces collide, which happens with
negligible probability 1/|nonce|, so the algorithm rewrites
na = nb to false and derives a contradiction, by eliminating
the collisions between the two nonces. More generally, when
the algorithm derives a contradiction, the probability that F
holds is negligible, and we say that “F yields a contradiction
in game Q0”. (We omit the current game Q0 when it is clear
from the context.) Previous versions of this algorithm were
presented in [18, Appendix C.5] and [17, Appendix B.3].

B. Secrecy

Let us now define a criterion that proves the secrecy of
a variable x. In the first definition of such a criterion [18,
Section 4], when x was defined by an assignment x[i] = y[M ],
CryptoVerif required the whole array y to be secret. We improve
this criterion by requiring only that the cells of y that may
be stored in x be secret. The other cells of y may leak to the
adversary. This extension is important in order to deal with the
compromise of keys, since in the presence of key compromise,

the adversary can often obtain some session keys, while other
session keys remain secret.

Example 2: We illustrate the proof of secrecy on the
following toy example:

Q0 = !i≤nc[i]();new k : key; c[i]⟨⟩; d[i](compr : bool);

if compr then d[i]⟨µ1k⟩ else let x : key = µ2k in µ3d[i]⟨⟩

This process can be executed at most n times, for i from 1
to n, due to the replication !i≤n. The adversary triggers its
execution by sending a message to channel c[i], received by
the input c[i](). Then it generates a fresh random key k by
new k : key and returns control to the adversary by the output
c[i]⟨⟩ on channel c[i]. Then the adversary can send a boolean
value to channel d[i], received by the input d[i](compr : bool)
and stored in variable compr . If this value is true, the key k
is leaked to the adversary by the output d[i]⟨k⟩. Otherwise, k
is stored in variable x . Our goal is to show that this process
satisfies the secrecy of x with public variables V = ∅. ◁

To prove the secrecy of x in this example, we need to find
from which random variable(s) x is defined, k in the example,
and to track all usages of the cells of k stored in x, recursively
through assignments to other variables if any, to prove that
none of these usages leaks x to the adversary. We do this
as follows. We write µM to say that the term M occurs at
program point µ. We let defRandµ(x) be the random variable
that defines x just before program point µ:

defRandµ(x) =
x[̃i] if new x[̃i] : T ; µ . . . occurs in Q0

y[M̃ ] if let x[̃i] : T = y[M̃ ] in µ . . . occurs in Q0 and
y is defined only by random choices in Q0

undefined otherwise

When x itself is chosen randomly just before program point µ,
defRandµ(x) is simply x[̃i], where ĩ are the current replication
indices at µ, that is, the indices of replications syntactically
above µ in the game. When x is defined by an assignment of
a variable y[M̃ ] that is random, defRandµ(x) is that variable.
In all other cases, we give up and do not define defRandµ(x).
(These other cases can typically be handled by first removing
assignments.)

In order to prove that the game Q0 satisfies the one-session
secrecy of x, we use the algorithm prove1-ses.secr.(x) defined
formally in the full version [22, Section 4.1] and explained here.
For each definition of x in Q0, just before program point µ,
we let y[M̃ ] be the variable that defines x[̃i] at that point
(y[M̃ ] = defRandµ(x)), and we show that the probability that
y[M̃ ] leaks to the adversary and Fµ holds is negligible. (When
the facts Fµ do not hold, µ is not reached so that definition of
x is not executed, hence it can certainly not leak x.) To show
that the probability that y[M̃ ] leaks and F holds is negligible,
we proceed as follows:

• If F yields a contradiction, then the desired result holds:
F itself holds with negligible probability, so a fortiori the
probability that y[M̃ ] leaks and F holds is negligible.



• Otherwise, if y ∈ V , then the desired result does not hold:
the adversary can access y because it is a public variable.

• Otherwise, the leak of y[M̃ ] may come from occurrences
of y[M̃ ′] inside terms in the game Q0 that read y[M̃ ] and
that leak its value. Hence, we consider each occurrence
of y[M̃ ′] in Q0 and let µ′ be its program point.

– If that occurrence of y[M̃ ′] is in the term M in an
assignment let z[ĩ′] =M in Q0 and M is built from
replication indices, variables, function applications,
and conditionals, then this assignment stores in z[ĩ′]
a value that may depend on y[M̃ ′]. It may make
y[M̃ ] leak only when z[ĩ′] itself leaks, M̃ ′ = M̃ ,
and the assignment has been executed, so Fµ′ holds.
Therefore, we recursively show that the probability
that z[θĩ′] leaks and F ∪ θFµ′ ∪ {θM̃ ′ = M̃} holds
is negligible, where θ is a renaming of the current
replication indices at µ′ to fresh replication indices.
(We rename the replication indices to avoid any clash
between the names of replication indices.) We avoid
loops by not doing this recursively several times
for the same variable z. If we meet again the same
variable z in a recursive call, we apply the third case
below instead.

– If that occurrence of y[M̃ ′] is in the argument of an
event, then we consider that it does not make y[M̃ ]
leak, because the adversary, represented by a context,
does not have access to the arguments of events.

– Otherwise, an occurrence of y[M̃ ′] at µ′ may make
y[M̃ ] leak only when it is executed with M̃ ′ = M̃ ,
so only when M̃ ′ = M̃ and Fµ′ hold. We show that
F∪θFµ′∪{θM̃ ′ = M̃} yields a contradiction, where
θ is a renaming of the current replication indices at µ′

to fresh replication indices. When this proof succeeds,
the probability that F ∪ θFµ′ ∪ {θM̃ ′ = M̃} holds
is negligible, so the probability that F holds and
y[θM̃ ′] is executed with θM̃ ′ = M̃ is negligible, so
the probability that this occurrence of y[M̃ ′] makes
y[M̃ ] leak and F holds is negligible.

In order to prove secrecy, we also define provedistinct(x) as
for all µ1, µ2 that follow a definition of x in Q0, z1 ̸= z2
or θ1Fµ1

∪ θ2Fµ2
∪ {θ1M̃1 = θ2M̃2, ĩ1 ̸= ĩ2} yields a con-

tradiction, where defRandµ1
(x) = z1[M̃1], defRandµ2

(x) =

z2[M̃2], ĩ are the current replication indices at the definition of
x, θ1 and θ2 are two distinct renamings of ĩ to fresh replication
indices, ĩ1 = θ1ĩ, and ĩ2 = θ2ĩ. Intuitively, provedistinct(x)

guarantees that, for all µ1, µ2 that follow a definition of x,
if x[̃i1] is defined at µ1, so x[̃i1] = z1[θ1M̃1], and x[̃i2] is
defined at µ2, so x[̃i2] = z2[θ2M̃2], with ĩ1 ̸= ĩ2, then the
random variables that define x in these two cases, z1[θ1M̃1]

and z2[θ2M̃2], are different, that is, z1 ̸= z2 or θ1M̃1 ̸= θ2M̃2.
Therefore, z1[θ1M̃1] is independent of z2[θ2M̃2], so x[̃i1] is
independent of x[̃i2]. Combining this information with the
proof of one-session secrecy, we can prove secrecy of x:

proveSecrecy(x) = prove1-ses.secr.(x) ∧ provedistinct(x)

This algorithm is justified by the following proposition, proved
in the full version [22, Section 4.1, Proposition 1].

Proposition 1 ((One-session) secrecy): Let sp be
1-ses.secr.(x) or Secrecy(x). If provesp , then Q0 satisfies sp
with public variables V (x /∈ V ). ◁

Example 3: We apply the algorithm to the game Q0 of
Example 2. We denote by F{i′/i} the set F with i′ substituted
for i. Recall that k, compr , and x are implicitly arrays indexed
by i. The game Q0 contains a single definition of x, just
before program point µ3; x is defined by an assignment from
k[i] (the current replication index i is implicit in the process)
so defRandµ3(x) = k[i]. To prove one-session secrecy of x,
prove1-ses.secr.(x), we show that the probability that k[i] leaks
and Fµ3

holds is negligible. The facts Fµ3
do not yield a

contradiction (µ3 is reachable). We have k /∈ V . Then we
consider the two occurrences of k[M̃ ′] in Q0, at program
points µ1 and µ2.

At program point µ1, the occurrence of k is neither in an
assignment or an event, so we are in the third case. We show
that Fµ3

∪ Fµ1
{i2/i} ∪ {i2 = i} yields a contradiction. This

is true because ¬compr [i] ∈ Fµ3
and compr [i2] ∈ Fµ1

{i2/i}:
the same cell of k indexed by i2 = i cannot be both stored in
x (before µ3) and leaked at µ1.

At program point µ2, the occurrence of k is in an assignment
to x. We show recursively that the probability that x[i3] leaks
and Fµ3 ∪ Fµ2{i3/i} ∪ {i3 = i} holds is negligible. This is
true because x /∈ V and x is never used in Q0: there is no
occurrence of x[M̃ ′] to consider, x never leaks.

Hence, we have prove1-ses.secr.(x).
Moreover, provedistinct(x) is k ̸= k or Fµ3

{i1/i} ∪
Fµ3
{i2/i} ∪ {i1 = i2, i1 ̸= i2} yields a contradiction, which

is true: i1 = i2 and i1 ̸= i2 yield a contradiction. Distinct cells
of x, of indices i1 and i2, come from distinct cells of k, and
are thus independent. Therefore, we have proveSecrecy(x).

By Proposition 1, Q0 satisfies the secrecy of x without
public variables. ◁

This improved proof of secrecy is useful to prove forward
secrecy in a signed Diffie-Hellman protocol, for instance. In
this example, the compromise of signature keys can be taken
into account by including it in the assumption on signatures.

C. Correspondences

The algorithm that CryptoVerif uses in order to prove corre-
spondences was first presented in [17]. The full version [22,
Section 4.2] presents a version that uses exact security rather
than asymptotic security and with a few extensions unrelated
to key compromise.

V. NEW COMMANDS

In this section, we present the new commands that we
have added to CryptoVerif in order to deal with dynamic
key compromise. These commands can be used to guide the
tool so that it can perform the proof. Although we focus on
key compromise in this paper, these commands are general
enough that they can be applied for other purposes.



Client C Server S

x
R← [1, q − 1]

X ← gx X−−−−−→ y
R← [1, q − 1]

Y ← gy

kc∥ks∥k =
H(Xy, X, Y, psk)Y, ks←−−−−−k′c∥k′s∥k′ =

H(Y x, X, Y, psk)
check k′s = ks k′c−−−−−→ check k′c = kc

Fig. 2. Running example. The final session key is k = k′.

Example 4: In order to illustrate the usage of these new
commands, we use as a running example a Diffie-Hellman key
exchange with pre-shared key, for which we prove forward
secrecy with respect to the compromise of the pre-shared key.
This protocol is a very simplified version of the TLS 1.3 Diffie-
Hellman handshake with pre-shared key; it is a kind of example
that cannot be handled by the basic treatment of compromise
of Section II, because the pre-shared key is not used in key
position in a primitive but as argument of a random oracle.

In this protocol, a client C and a server S initially share
a pre-shared key psk and exchange messages as shown in
Figure 2 where g is a generator of a group1 G of prime order q.
Furthermore, we assume that G satisfies the gap Diffie-Hellman
(GDH) assumption [42], that is, a probabilistic polynomial-
time adversary has a negligible probability of computing gab

knowing ga and gb for two random exponents a, b ∈ [1, q− 1]
and having access to a decisional Diffie-Hellman oracle which,
given G,X, Y, Z, returns whether X , Y , Z is a good Diffie-
Hellman triple with generator G, that is, whether there exist x
and y such that X = Gx, Y = Gy , and Z = Gxy .

The client C chooses randomly x in [1, q − 1] and sends
to the server S the public exponential X = gx. The server
chooses randomly y in [1, q−1], computes its public exponential
Y = gy, the Diffie-Hellman shared secret gxy as Xy, and
three keys kc, ks, and k of the same length as kc∥ks∥k =
H(gxy, X, Y, psk), where ∥ is concatenation and H is a random
oracle. We recall that a random oracle is a function that returns
a fresh random value when it is called on a new argument and
returns the previous result when it is called again on the same
argument. The key k is the session key for which we want to
prove forward secrecy, while kc and ks serve to provide mutual
authentication between the client and the server. The server
sends to the client Y and ks. The client can then compute
the Diffie-Hellman shared secret gxy as Y x and the keys k′c,
k′s, and k′ like the server k′c∥k′s∥k′ = H(gxy, X, Y, psk). It
verifies that the key ks it received from the server is equal
to the key k′s it computed. Since the pre-shared key psk is
required to compute this key, that authenticates the server to

1Formally, G is a family of prime-order groups indexed by the security
parameter, since we work in the asymptotic framework. For simplicity, we
name it “a group”.

the client. The client sends the key k′c to the server, and the
server verifies that this key is equal to the key kc it computed.
That authenticates the client to the server.

This protocol is modeled as follows in CryptoVerif:

cStart();new hk : hashkey;new psk : key; cStart⟨⟩;
(Client(hk , psk) | Server(hk , psk) |
corruptPSK(psk) | hashoracle(hk))

The adversary can start the protocol by sending a message on
channel cStart , which will be received by the input cStart().
Then the protocol chooses randomly a fresh key hk , which
models the choice of the random oracle itself.2 It also chooses
the pre-shared key psk , and returns control to the adversary
by outputting an empty message on channel cStart . Then four
processes run in parallel, representing respectively the client,
the server, the corruption of the pre-shared key, and the hash
oracle. The process hashoracle(hk), not detailed here, allows
the adversary to call the hash oracle H.

The process corruptPSK allows the adversary to obtain the
pre-shared key psk at any time, by sending a message on
channel cCorrupt . It sends the pre-shared key on channel
cCorrupt , and records that the pre-shared key has been
corrupted by defining the variable corruptedPSK :

let corruptPSK(psk : key) = cCorrupt();
let corruptedPSK : bool = true in µ1cCorrupt⟨psk⟩.

The client is represented by the following process:

let Client(hk : hashkey, psk : key) =
!ic≤nccC0 [ic]();new x : Z; let X = exp(g, x) in

cC1 [ic]⟨X⟩; cC2 [ic](Y ′ : G, ks : key);
let tuple3keys(k′c, k

′
s, k

′) =
split3(H(hk , exp(Y ′, x), X, Y ′, psk)) in

if ks = k′s then
if defined(corruptedPSK ) then

cC3 [ic]⟨k′c⟩
else

let k secret c : key = k′ in cC3 [ic]⟨k′c⟩

The client process takes as argument the keys hk and psk
chosen in the initial process. It can be executed at most nc
times, as expressed by the replication !ic≤nc . It is triggered
when a message is received by the input cC0 [ic]() on channel
cC0 [ic] (c stands for channel, C for client). Then it chooses
randomly the exponent x. (The type Z represents the type of
exponents [1, q − 1].) It computes the exponential X , using
the exponentiation function exp, and sends it as first real
message of the protocol by the output cC1 [ic]⟨X⟩. Then the
client waits for the second message of the protocol on channel
cC2 [ic]. When it is received, it is stored in Y ′, ks. Then
the client computes the keys k′c, k′s, k′ as specified in the
protocol. The function H takes as additional argument the

2This key makes the modeling of the random oracle look formally similar
to a pseudo-random function (PRF). However, it differs in that the adversary
has access to the random oracle and the key is only a modeling artifact not
present in the protocol implementation. (The implementation uses a fixed hash
function for the random oracle.)



key hk , which models the choice the random oracle. The
function split3 splits the output of the random oracle into a
tuple of 3 keys. These keys are stored in k′c, k′s, k′ by matching
this tuple with tuple3keys(k′c, k

′
s, k

′). The client verifies that
k′s = ks, and when this holds, it will always output the last
message of the protocol k′c by cC3 [ic]⟨k′c⟩. Moreover, we
encode forward secrecy of k′ as follows: when the pre-shared
key is not corrupted yet, which is tested by checking that the
variable corruptedPSK is not defined yet, so in the else branch
of the test if defined(corruptedPSK ), the client additionally
stores the session key k′ in k secret c. We are going to show
the secrecy of k secret c: that shows secrecy of session keys
k′ for sessions that terminate before the pre-shared key is
corrupted, which corresponds to forward secrecy of k′. (The
pre-shared key may be corrupted after the end of the session.
A more detailed model would give the sessions keys for which
we do not prove secrecy to the adversary, to simulate reveal
queries on those keys. For simplicity, we omit this point.)

Similarly, the server is represented by the following process:

let Server(hk : hashkey, psk : key) =
!is≤nscS1 [is](X

′ : G);new y : Z; let Y = exp(g, y) in
let tuple3keys(kc, ks, k) =
split3(H(hk , exp(X ′, y), X ′, Y, psk)) in

cS2 [is]⟨Y, ks⟩; cS3 [is](k′c : key); if kc = k′c then
if defined(corruptedPSK ) then yield else
let k secret s : key = k.

It can be executed at most ns times. It is triggered when it
receives the first message of the protocol on channel cS1 [is] (c
stands for channel, S for server). Here, the adversary is assumed
to control the network; it is in charge of forwarding messages
between the client and the server, possibly modifying them in
order to mount attacks. For instance, to run a normal session
of the protocol, the adversary should forward the message sent
on channel cC1 [ic] by the client to the server on a channel
cS1 [is] for some is; then the execution number ic of the client
runs a session of the protocol with the execution number is of
the server. The server stores the message received on channel
cS1 [is] in X ′, chooses the exponent y, and computes the
exponential Y . It computes the keys kc, ks, k much like the
client, and outputs the second message of the protocol Y, ks on
channel cS2 [is]. Then it waits for the third message on channel
cS3 [is], stores it in k′c and verifies that kc = k′c. When this
check succeeds, the protocol terminates. As in the client, when
the pre-shared key is not corrupted yet, we store the session
key k in k secret s . We are going to prove the secrecy of
k secret s to show forward secrecy of the session key k.

The proof of secrecy of k secret c and k secret s in
CryptoVerif relies in particular on the new commands below.◁

A. focus
By default, CryptoVerif tries to prove all desired properties

simultaneously, using the same sequence of games. The
command focus q1, . . . , qm tells CryptoVerif to prove only the
properties q1, . . . , qm (secrecy and correspondences properties),
as a first step. The other properties to prove are (temporarily)

ignored. Focusing on the queries q1, . . . , qm has an effect on
subsequent game transformations that are allowed: events that
do not occur in these queries can be removed; only the active
queries are considered in the transformation success simplify
defined below (Section V-B).

When q1, . . . , qm are proved, CryptoVerif automatically goes
back to before the focus command to prove the remaining
properties. The user can also go back to before the last focus
command at any time using the command undo focus.

In our approach to key compromise, we use the focus
command to prove the authentication property mentioned at
the end of Section II, as we illustrate in our running example.

Example 5: In order to show the secrecy of the session key k,
resp. k′, in Example 4, we need to show that, when the client
or the server successfully terminates the protocol, the adversary
has a negligible probability of performing the same random
oracle call to H as the client or the server. Since the pre-shared
key psk may be compromised, that amounts to showing that
the adversary does not know the Diffie-Hellman value Xy,
resp. Y x, which can be shown using the gap Diffie-Hellman
assumption (GDH), when the Diffie-Hellman value is gxy for
x and y chosen by the client and the server respectively, that
is, when the exponentials match: X = gx, resp. Y = gy. We
eliminate the case in which the exponentials do not match
by executing events and aborting in this case (as detailed just
below); since the games differ when these events are executed,
we will need to show that these events happen with negligible
probability. For that, we will be able to rely on the secrecy of
the pre-shared key, because these events are always executed
before the compromise of the pre-shared key.

In more detail, in the client, we introduce a test find j3 ≤ ns
suchthat defined(X ′[j3], Y [j3]) ∧ X = X ′[j3] ∧ Y ′ =
Y [j3] then just before the definition of k secret c. This test
verifies that the exponentials X , Y ′ in the client correspond
to the exponentials X ′, Y in some execution of the server
of index j3. When this test is not true, we execute event
client break auth, so that the end of the client becomes:

find j3 ≤ ns suchthat defined(X ′[j3], Y [j3]) ∧
X = X ′[j3] ∧ Y ′ = Y [j3]

then let k secret c : key = k′ in cC3 [ic]⟨k′c⟩
else µ2event abort client break auth

This transformation is performed by the CryptoVerif command

insert before ”let k secret c” ”find j3 ≤ ns suchthat

defined(X ′[j3], Y [j3]) ∧X = X ′[j3] ∧ Y ′ = Y [j3] then

else event abort client break auth”

The obtained game differs from the initial game exactly when
event client break auth is executed, and we will show that
this event happens with negligible probability by proving the
correspondence event(client break auth)⇒ false. That will
imply that the games are computationally indistinguishable.
This is an application of Shoup’s lemma [50], which says
that, if two games differ only when some event happens,
then the probability of distinguishing these games is bounded



by the probability of the event; this is the well-known “up-
to bad” approach also used, e.g., in EasyCrypt. The event
client break auth is executed when authentication of the server
to the client is broken: the client successfully terminates the
protocol, although there is no session of the server with
matching exponentials.

Similarly, we transform the last line of the server into

find j4 ≤ nc suchthat defined(X[j4]) ∧X ′ = X[j4]
then let k secret s : key = k
else µ3event abort server break auth

and that game differs from the previous one only when event
server break auth is executed.

At this point, we need to prove the secrecy
of k secret c and k secret s and the correspon-
dences event(client break auth) ⇒ false and
event(server break auth)⇒ false. By the command

focus ”query event(client break auth)⇒ false”,

”query event(server break auth)⇒ false”

we tell CryptoVerif to start by proving the two correspondence
properties, without considering the secrecy properties. We
continue the proof in Example 6. ◁

The focus command is more generally useful when different
properties require different proofs.

B. success simplify
The transformation success simplify extends the existing

command success, which proves the desired security properties
as explained in Section IV. The command success simplify
first collects information that is known to hold when the
adversary breaks at least one of the desired properties. Then,
it performs a simplification step: it removes parts of the
game that contradict this information and replaces them with
event abort adv loses. Indeed, when these parts of the game
are executed, the adversary cannot break any of the security
properties to prove, so they can be safely removed. Typically,
success simplify allows us to remove the key compromise
when we only prove authentication before compromise.

Here, we explain a simplified version of this transformation,
assuming all active queries are of the form event(ei)⇒ false,
where the events ei are executed by event abort ei in the
game. This case is sufficient for most examples. The full
transformation supports other queries, as explained in the full
version [22, Section 5.1.23]. The command success simplify
computes L = {θFµ | event abort ei occurs at µ in the
game, θ is a renaming of the current replication indices at µ
to fresh replication indices}. When the property event(ei)⇒
false is broken, event ei is executed by event abort ei at
some program point µ, so Fµ holds. Therefore, when some
property event(ei)⇒ false is broken, some set of facts F ∈ L
holds. (In the computation of L, we rename the replication
indices at µ to fresh indices by θ to avoid colliding indices in
the simplification step below.)

In the simplification step, the set L is used as follows:
for each program point µ, if for all F ∈ L, Fµ ∪ F

yields a contradiction, then the code at µ is replaced with
event abort adv loses.

If a security property is broken before the transformation
and not after, then a modified program point µ is reached and
the adversary breaks the property. Since µ is reached, Fµ holds.
Since the adversary breaks the property, some F in L holds. So
Fµ ∪F holds, which has a negligible probability of happening
because for all F ∈ L, Fµ∪F yields a contradiction. Therefore,
if a security property is broken before the transformation, then
it is also broken after the transformation, since all properties
are considered up to negligible probability. This is formalized
by the following lemma.

Lemma 1: If transformation success simplify transforms
G into G′, the property sp is a secrecy or correspondence
property and corresponds to an active query, and G′ satisfies
sp, then G satisfies sp. ◁

A more general version of this result is proved in the full
version [22, Section 5.1.23, Lemma 63].

Example 6: Continuing Example 5, when the events
client break auth and server break auth are executed, the
variable corruptedPSK is not defined (these events occur
in the else branch of the test if defined(corruptedPSK )),
so the pre-shared key has not been leaked yet. That al-
lows the command success simplify to remove the output
of the pre-shared key cCorrupt⟨psk⟩ and replace it with
event abort adv loses.

In more detail, L = {Fµ2{i′c/ic},Fµ3{i′s/is}} since
event client break auth occurs at program point µ2 and
event server break auth occurs at program point µ3.
We have ¬defined(corruptedPSK ) ∈ Fµ2

{i′c/ic}
and ¬defined(corruptedPSK ) ∈ Fµ3

{i′s/is}, because
both µ2 and µ3 are in the else branch of a test
if defined(corruptedPSK ). Moreover, since the program
point µ1 of cCorrupt⟨psk⟩ is under the definition of
corruptedPSK , we have defined(corruptedPSK ) ∈ Fµ1

.
Therefore, Fµ1

∪ Fµ2
{i′c/ic} yields a contradiction and

similarly, Fµ1
∪ Fµ3

{i′s/is} yields a contradiction. The
command success simplify then replaces the code at µ1 with
event abort adv loses.

We can then prove event(client break auth)⇒ false and
event(server break auth) ⇒ false assuming the pre-shared
key is never corrupted, since success simplify removed that
corruption. We apply the random oracle assumption on H by
the command crypto rom(H). Since the pre-shared key is
never corrupted, the adversary has a negligible probability of
providing to the random oracle the same arguments as in the
client or the server. After simplification of the game, that allows
CryptoVerif to show that in the server, the result of the random
oracle is always a fresh random value and that in the client, it
is either a) the same value as in some execution of the server
or b) a fresh value. By the command crypto splitter(split3)
*, we use that splitting a uniformly chosen bitstring of a fixed
length into 3 bitstrings of fixed lengths yields uniformly chosen
bitstrings. (The star * applies this property as many times as
possible.) After this transformation, the keys kc, ks, and k in
the server are fresh random values. Furthermore, in case b)



above, k′s is a fresh random value, so the test k′s = ks in the
client has a negligible probability of succeeding. So the only
case that allows the test k′s = ks to succeed with non-negligible
probability is a): the random oracle returned the same result as
in some execution of the server. In this case, the arguments of
the random oracle are also the same in the client and the server,
so the test find j3 ≤ ns suchthat defined(X ′[j3], Y [j3])∧
X = X ′[j3]∧Y ′ = Y [j3], introduced in Example 5, succeeds.
The else branch of that test can then be removed, which
removes the event client break auth.

A similar reasoning allows CryptoVerif to remove the event
server break auth in the server. Then the command success
proves the correspondences event(client break auth) ⇒
false and event(server break auth) ⇒ false since the two
considered events do not occur in the current game.

Since all active queries are proved, CryptoVerif goes back
to before the focus command and tries to prove secrecy of
k secret c and k secret s in that game. In the game before
the focus command, the pre-shared key may be corrupted,
so we cannot rely on its secrecy to show that the adversary
cannot compute the same random oracle calls as the client
and the server. We rely on the GDH assumption instead.

As explained at the beginning of Example 5, in order to apply
GDH, we must isolate the cases in which the computed Diffie-
Hellman value Y x or Xy is gxy for x, y chosen by the client
and the server respectively. We do this by introducing tests on
the received exponentials similar to those introduced in Exam-
ple 5, but earlier in the process, as soon as the exponentials are
received, so that the cases are distinguished before computing
Y x (resp. Xy). Precisely, we first introduce a test after the
input cS1 [is](X ′ : G) in the server, to distinguish whether the
received exponential X ′ comes from the client or not: find j′ ≤
nc suchthat defined(X[j′])∧X ′ = X[j′] then. After that,
the server contains two copies of the code from new y : Z,
one when the test succeeds, one when it fails. We rename the
variable Y to two distinct names in these two copies: Y2 when
the test succeeds, Y3 when it fails. Similarly, we introduce a test
after the input cC2 [ic](Y ′ : G, ks : key) in the client, to distin-
guish whether the received exponential Y ′ comes from a session
of the server that received the exponential X from the client:
find j′′ ≤ ns suchthat defined(Y2[j

′′], X ′[j′′]) ∧ X =
X ′[j′′] ∧ Y ′ = Y2[j

′′] then. By the tests already introduced
in the client and in the server in Example 5, the variables
k secret c and k secret s that we want to prove secret are
defined only when the two tests above succeed. (Otherwise,
we execute events client break auth or server break auth.)
Then we apply the random oracle assumption on H and the
GDH assumption. When the test find j′ ≤ nc suchthat
defined(X[j′])∧X ′ = X[j′] then (introduced after the input
on cS1 ) succeeds, we have X ′ = X[j′] = gx[j

′], so the value
of exp(X ′, y) in the server is gx[j

′]y , and the adversary has a
negligible probability of computing it by GDH. Therefore, the
adversary has a negligible probability of the computing the argu-
ment of the random oracle H, so the result of the random oracle
is indistinguishable from a fresh random value to the adversary.
Therefore, k, and so k secret s are indistinguishable from

fresh random values to the adversary. This is the main argument
that allows CryptoVerif to prove the secrecy of k secret s .
CryptoVerif proves the secrecy of k secret c in a similar way.

The secrecy and correspondence properties are proved
using different sequences of games. CryptoVerif automatically
combines these sequences of games into a tree (with branching
at the focus command) that constitutes a full proof of the
secrecy of k secret s and k secret c. ◁

Generalizing the example above, we prove forward secrecy
with respect to the compromise of a key k0 as follows. We intro-
duce events (such as client break auth and server break auth
above), executed when authentication does not hold (i.e., the
protocol successfully terminates but the messages seen by
the client and server do not match) while the key k0 is not
compromised yet. Using focus, we focus on proving that
these events happen with negligible probability. Then, by
success simplify, we remove the compromise of k0 (since the
considered events are never executed once k0 is compromised).
Then we show that these events happen with negligible
probability, by relying on the secrecy of k0. After that, we come
back to before the focus command and prove the remaining
queries, exploiting that the cases in which authentication does
not hold have been removed by introducing events.

This proof technique is similar to some pen-and-paper proofs
of forward secrecy, such as the one of [27, Appendix D]. (The
events EncryptBCk and AuthBCk of [27, Appendix D] play the
same role as client break auth and server break auth here.)

Example 7: We consider again the example of Section II,
and show the model of ciphertext integrity with compromise
(Figure 1) from a definition without compromise. Basically, we
transform the left and right-hand sides of the indistinguishability
property into the following game G3:

new k : key; (
!i≤nOenc(x : cleartext) :=
new r : enc seed; let z : ciphertext = enc r(x, k, r)
in return(z) |

!i
′≤n′

Odec(y : ciphertext) :=
if defined(corrupt) then return(dec(y, k)) else
find j ≤ n suchthat defined(x[j], z[j]) ∧ z[j] = y
then return(injbot(x[j])) else
if dec(y, k) <> bottom then µevent abort disting
else return(bottom) |

Ocorrupt() := let corrupt : bool = true in µ1return(k)).

Using (1), we can see that the left-hand side L of Figure 1
differs from G3 only when event disting is executed. Similarly,
the right-hand side R of Figure 1 differs from G3 only
when event disting is executed. Hence, the probability of
distinguishing L from R is bounded by the probability of
disting in G3. We show that this probability is negligible by
proving the correspondence query event(disting) ⇒ false.
To do that, we first apply the transformation success sim-
plify. Intuitively, when the correspondence event(disting)⇒
false is broken, event disting is executed, so corrupt is
not defined; therefore, the program point µ1 has not been
executed. That allows us to replace µ1return(k) with



event abort adv loses. Formally, L = {Fµ{i′′/i′}}, where
event disting occurs at µ. We have defined(corrupt) ∈ Fµ1

and ¬defined(corrupt) ∈ Fµ{i′′/i′} (since µ is in the
else branch of if defined(corrupt)), so Fµ1 ∪ Fµ{i′′/i′}
yields a contradiction, and we replace the code at µ1 with
event abort adv loses. In the transformed game G4, the
key k is never corrupted, so we can apply the standard
ciphertext integrity assumption without corruption to show
that the probability of disting is negligible and conclude that
the probability of distinguishing L from R is negligible. ◁

C. guess i
The transformation guess i consists in guessing the tested

session of a principal in a protocol, a frequent step in
cryptographic proofs: properties (e.g. one-session secrecy) may
be defined using a test query, and guessing the tested session
means guessing on which session the adversary is going to
perform its test query. More generally, by guessing the tested
session, we prove security properties for one session (the tested
one) and infer that they hold in all sessions by symmetry. In
CryptoVerif, a replicated process !i≤nQ represents n sessions
(or instances, or copies) of the principal represented by process
Q. A priori, CryptoVerif proves security properties for all
sessions of Q. By guessing the tested session of Q, we prove
the security properties only for one session of Q, the tested
one, for which the replication index i is equal to the guessed
value itested. Formally, we consider a game G and define a
transformed game G′ by replacing !i≤nQ with !i≤nQ′ where
Q′ is obtained from Q by replacing the processes P under the
first inputs with if i = itested then P ′ else P ′′ and itested is
a constant. We distinguish the process executed in the tested
session, P ′, on which we are going to prove security properties,
from the process P ′′ for other sessions which are executed,
but for which we do not prove security properties. The process
P ′ is obtained from P by

• duplicating all events: event e(M̃) is replaced with
event e(M̃); event e′(M̃) and event abort e is re-
placed with event e; event abort e′. We require that
in the game G, the same event e cannot occur both under
the modified replication !i≤nQ and elsewhere in the game.
(Otherwise, queries that use e are left unchanged.)

• duplicating definitions of every variable x used in queries
for secrecy and one-session secrecy: let x′ = x in is
added after each definition of x. We require that in the
game G, the same variable x used in queries for secrecy
or one-session secrecy cannot be defined both under the
modified replication !i≤nQ and elsewhere in the game.
(Otherwise, the considered query is left unchanged.)

The process P ′′ is obtained from P by duplicating definitions
of every variable x used in queries for secrecy (not one-session
secrecy): let x′′ = x in is added after each definition of x.

We replace variables x in secrecy and one-session secrecy
queries with their duplicated version x′. For secrecy queries,
the duplicated version x′′ is added to public variables. In
both cases, we prove (one-session) secrecy for the variable x′

defined in the tested session. In case of one-session secrecy,

that is enough: it shows that x′ is indistinguishable from a
random value, and that proves one-session secrecy of x for all
sessions by symmetry. However, for secrecy, we additionally
want to show that the values of x in the various sessions are
independent of each other; this is achieved by considering the
value of x in sessions other than the tested session (that is, x′′)
as public: if x′ is indistinguishable from random even when
x′′ is public, then x′ is independent of x′′.

In correspondence queries without injective events, we
replace one non-injective event e before the arrow ⇒ with its
duplicated version e′. Hence, we prove the query for the tested
session, which uses event e′. The proof is valid for all sessions
by symmetry.

Other queries are left unchanged: secrecy and one-session
secrecy queries for variables not defined under the modified
replication, non-injective correspondence queries with no event
before the arrow⇒ under the modified replication (the previous
queries prove properties about other principals than the one for
which we guess the tested session) as well as correspondence
queries with injective events (see details below). It is clear that
these queries are not affected by the transformation.

Lemma 2: Suppose the game G is transformed into G′ by the
transformation guess i, where i is a replication index bounded
by n. Below, we consider only the modified queries.

Let sp and sp′ be respectively a correspondence without
injective events and its transformed correspondence. If G′

satisfies sp′, then G satisfies sp.
If G′ satisfies the one-session secrecy of x′ with public

variables V (x, x′, x′′ /∈ V ), then G satisfies the one-session
secrecy of x with public variables V .

If G′ satisfies the secrecy of x′ with public variables V ∪{x′′}
(x, x′, x′′ /∈ V ), then G satisfies the secrecy of x with public
variables V . ◁

A version of this result for exact security is proved in the full
version [22, Section 5.1.17, Lemma 58]. In the exact security
framework, the probability of breaking a property in the initial
game G is basically n times the probability of breaking the
matching property in the transformed game G′.

Example 8: We consider the following protocol:

B → A: {na}pkA
A→ B: na

The key pkA is the public encryption key of participant A.
The participant B chooses a fresh random nonce na and sends
it to A encrypted under pkA, using an IND-CCA2 public-key
encryption scheme. Only A can decrypt this message, using her
secret key skA, and A replies by sending the nonce na to B.
When B sees this nonce, B knows that the first message has
been decrypted; therefore A has decrypted it: that authenticates
A to B.

This protocol is related to compromise in that the secrecy of
the nonce na is essential to the proof, but the nonce is leaked
(compromised) at the end of the protocol. We use guess and
the approach for dealing with compromise outlined at the end
of Section II to prove its security.

The role of B is modeled by the following process:



!iB≤nBc3[iB ]();new na : nonce; c4[iB ]⟨enc(pad(na), pkA)⟩;
c5[iB ](= na); event eB(na)

The replication !iB≤nB says that this process can be executed
at most nB times. It is triggered when a message is received
by the input c3[iB ]() on channel c3[iB ]. Then it generates a
fresh random nonce na , pads it to the length of an encryption
block by the function pad, and encrypts it under pkA. The
ciphertext is sent on channel c4[iB ]. When the process receives
a message equal to na on channel c5[iB ], it executes event
eB(na), meaning intuitively that B successfully terminates the
protocol with nonce na . A similar event eA(na) is executed
by A after she decrypts B’s message, meaning that A was
involved in the protocol with nonce na . Our goal here is to
show the correspondence (2) of Example 1. As in Example 4,
the adversary controls the network. It is in charge of relaying
messages between A and B, possibly modifying them in order
to mount attacks.

The first step of the proof is to guess the tested session for
B, by guess iB . That transforms the code for B into

!iB≤nBc3[iB ]();
if iB = iBtested then

new na : nonce; c4[iB ]⟨enc(pad(na), pkA)⟩;
c5[iB ](= na); event eB(na); event e

′
B(na)

else

new na : nonce; c4[iB ]⟨enc(pad(na), pkA)⟩;
c5[iB ](= na); event eB(na)

without affecting the rest of the process. The query to prove
becomes ∀x : nonce; event(e′B(x))⇒ event(eA(x)), using
e′B instead of eB , so we prove the correspondence for the
tested session, of index iB = iBtested. Then we distinguish
whether the nonce na has been generated in the tested session
or not, by renaming na to na3 in the tested session and to
na2 in the others. Next, we apply the IND-CCA2 assumption
on encryption, only in the tested session. That replaces the
encryption of pad(na3) with the encryption of a 0 block
Zb, and adapts the decryption accordingly in A: when the
message received by A is that encryption of Zb sent by B in
the tested session, we replace the decryption with pad(na3).
Otherwise, we decrypt normally. Next, we insert a find just
before e′B that tests whether eA(na3) has been executed; its
then branch still executes e′B while its else branch executes
event abort bad. That game differs from the previous one
only when event bad is executed, and we are going to show that
its probability is negligible. In that game, the correspondence
∀x : nonce; event(e′B(x)) ⇒ event(eA(x)) is proved since
the find guarantees the execution of eA with the appropriate
argument. To show that the probability of bad is negligible,
we use the command success simplify, which removes the
output of na3 in A (when na3 is sent, eA(na3) has been
executed, so bad will not be executed). For that, the previous
application of guess is crucial: the nonces na2 for the other
sessions are still output. Finally, a dependency analysis on na3

shows that the adversary has no information on na3, so the
input c5[iB ](= na3) has a negligible probability of succeeding:

the code that follows it is removed, which removes event bad
and concludes the proof. ◁

In the guess transformation, we cannot modify correspon-
dence queries with injective events, because, in case we
prove the query only for the tested session, two executions
of some injective event e with different indices i could be
mapped to the same events in the conclusion of the query.
As a counter-example, consider the query: ∀i : [1, n], x :
T ′; event(e1(i, x)) ∧ inj-event(e2(x)) ⇒ inj-event(e3())
with events e1(i1, x1), e1(i2, x2), e2(x1), e2(x2) and e3 each
executed once. This query is false: we have two executions of
e2 (with matching executions of e1) for a single execution of
e3. That contradicts injectivity. However, the query is true if
we restrict ourselves to one value of i (the index of the tested
session), because we consider e1(i1, x1), e2(x1) and e3 for
i = i1 and e1(i2, x2), e2(x2) and e3 for i = i2. Requiring the
same value of x in e1 and e2 restricts the events e2 that we
consider when we guess the session for e1. Therefore, proving
the query for the tested session does not allow us to prove it
in the initial game.

Hence, for correspondences with injective events ∀x̃ :
T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ, we proceed as follows: we define a
non-injective correspondence noninj(∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ)
simply obtained by replacing injective events with non-injective
events, and we try to prove that noninj(∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ)

implies ∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ in the current game. If that
proof succeeds, we just have to prove noninj(∀x̃ : T̃ ;ψ ⇒
∃ỹ : T̃ ′;ϕ) and we can apply the guess transformation for
non-injective correspondences. Otherwise, we simply leave the
query ∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ unchanged.

The proof that noninj(∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ) implies
∀x̃ : T̃ ;ψ ⇒ ∃ỹ : T̃ ′;ϕ is a modified version of the proof
of injective correspondences. Intuitively, it shows that, if we
have different executions of injective events in ψ, then the
arguments of each injective event in ϕ must be different, which
implies different executions of this event. For this reason,
the arguments of events in ϕ must be chosen so that they
are actually different in this case; for instance, in Example 9
below, the presence of na as argument of events is essential
for the proof to work. This idea generalizes the one used
in [21, Lemma 1] to infer an injective correspondence from a
non-injective one in the symbolic model, using an argument
that appears in injective events both in ψ and ϕ, and such
that this argument has a different value for each execution an
injective event in ψ. Details are given in the full version [22,
Section 5.1.17, Proposition 4].

Example 9: Continuing Example 8, we now want to prove
correspondence (3) of Example 1. In the game before guessing
iB , distinct executions of eB have distinct values of their
argument na by eliminating collisions between nonces, so
assuming (2), they correspond to executions of eA also
with distinct arguments, therefore distinct executions of eA.
Therefore, (2) implies (3). We prove (2) as in Example 8, and
conclude that (3) also holds. ◁

CryptoVerif also supports other guessing transformations,



to guess the value of a variable and the branch taken in a
test. These transformations are detailed in the full version [22,
Sections 5.1.18 and 5.1.19].

D. Implementation details

Most game transformations are implemented as a separate
module, implementing a function that takes as input the initial
game and returns the transformed game, plus a description
of details of what has been transformed, and for the exact
security framework, the computation of the probability of
success of an attack. The transformation guess i fits in this
case. The transformation success simplify is implemented
by modifying the command success, which proves security
properties (Section IV), so that it collects information valid
when the security properties are broken. This information is
then used in a modified version of the transformation simplify
to perform the actual transformation. The command focus is
not a game transformation, it just modifies the active queries.

VI. APPLICATIONS

In this section, we present applications of the new techniques
and game transformations to practical case studies.

A. Forward Secrecy with respect to the Compromise of the
Pre-shared Key in TLS 1.3 and WireGuard

In a previous verification of TLS 1.3 Draft 18 using
CryptoVerif [16], the authors proved forward secrecy with
respect to the compromise of signature keys, by allowing
compromise in the model of the signature itself. However, they
could not prove forward secrecy with respect to the compromise
of the pre-shared key for the PSK-DHE handshake [16,
Section VI.C]. Basically, that handshake derives a key by
hashing together a pre-shared key (PSK) and a Diffie-Hellman
shared secret coming from a Diffie-Hellman key exchange
with ephemerals (DHE). We cannot include the compromise
of the PSK in the model of a primitive, so our new approach
is necessary. We prove this property by relying on the same
technique as in our running example (Examples 4 to 6).

Using a similar approach, we prove forward secrecy with
respect to the compromise of the pre-shared key in WireGuard,
which could not be proved in [39, Section VI].

B. PRF-ODH with Compromise

The PRF-ODH assumption (pseudo-random function oracle
Diffie-Hellman) [26] is an assumption on a combination of a
Diffie-Hellman exponentiation and a hash function h. We write
g for a generator of the Diffie-Hellman group. CryptoVerif
supports two variants of PRF-ODH. The first one says that
an adversary that has ga and gb for random a, b has a
negligible probability of distinguishing x 7→ h(gab, x) from a
random function. The second one is stronger: it additionally
gives the adversary access to oracles PRFDHa(x, Y ), which
returns h(Y a, x) when Y a ̸= gab and ⊥ otherwise, and
PRFDHb(x,X), which returns h(Xb, x) when Xb ̸= gab and
⊥ otherwise. (These oracles return ⊥ when they would compute
h(gab, x), which the adversary tries to distinguish from random.

When the Diffie-Hellman structure is a prime-order group, the
condition Y a ̸= gab is equivalent to Y = gb. However, this
is not true in structures like Curve25519 and Curve448 [38],
see [40, Section 3.3]. The presence of these oracles allows
one to prove the protocol secure even if the adversary can test
whether its exponential Y or X is the expected exponential,
for instance by seeing whether the session continues.) The
first variant can be proved from CDH and the random oracle
model, or from DDH and PRF (pseudo-random function); the
second one from GDH and the random oracle model. The
first variant is basically PRF-ODHnn in [26], the second one
PRF-ODHmm.

The PRF-ODH assumption is a decisional assumption. Hence,
in case an exponent a or b is compromised at some point, we
cannot apply it for this exponent. Therefore, we cannot use
the basic treatment of compromise to prove forward secrecy
with respect to the compromise of some exponent; we need
the new commands of Section V. We illustrate this point on
the Noise NK protocol [43], which relies on a long-term static
Diffie-Hellman key for authentication of the responder. We
prove forward secrecy of the encrypted payloads from the
third message with respect to the compromise of this key,
assuming the second variant of PRF-ODH and using focus
and success simplify as in our running example (Examples 4
to 6). In contrast, assuming GDH and the random oracle
model, we prove the same property using the basic treatment
of compromise: we can apply GDH when the static key is not
compromised yet, because it is a computational property.

As other usages of PRF-ODH, we also considered TLS 1.3
and a variant of the Diffie-Hellman authenticated KEM (Key
Encapsulation Mechanism) of HPKE (Hybrid Public-Key
Encryption) [4], [6]; in these examples, the new commands
focus and success simplify are needed only when we consider
the dynamic compromise of the pre-shared key in TLS 1.3, as
in Section VI-A, because the exponents are not compromised.
(We leave compromised ephemeral exponents for future work.)

C. Forward Secrecy for OEKE

In the password-based key exchange OEKE [27], we prove
forward secrecy with respect to the compromise of the password.
This property was proved on paper in [27], but was not
proved in the previous CryptoVerif study of this protocol [19].
This proof relies on the computational Diffie-Hellman (CDH)
assumption. We recall that, given a group G of prime order
q, with a generator g, an adversary succeeds against CDH
when it computes gab knowing ga and gb for two random
exponents a, b ∈ [1, q− 1]. Our proof of forward secrecy relies
on focus and success simplify as in our running example
(Examples 4 to 6); it also uses the guessing transformations,
to guess the tested session and its partner in order to apply
the CDH assumption to a single pair of exponents a and b,
and guess the result of a test Z = Xb for that exponent b,
so that this test is removed, which is needed to apply the
CDH assumption to a and b since this assumption allows
the adversary to know ga and gb but not the result of a test
Z = Xb.



Model #f #c runtime
VI-A TLS 1.3 1 34 1 min 39 s

WireGuard 12 45 to 47 4 h 40 min
VI-B NoiseNK with PRF-ODH 1 27 31 s

NoiseNK with GDH+ROM 1 16 19 s
TLS 1.3 with PRF-ODH
- Key schedule lemmas 4 0 1 s
- Initial handshake 1 17 3 min 26 s
- PSK without corruption 1 0 13 min 32 s
- PSK with corruption 1 30 6 min 53 s
HPKE with PRF-ODH 3 34 to 53 30 s

VI-C OEKE 1 67 31 s
VI-D WireGuard 1 108 21 min 25 s

Fig. 3. Guidance and runtime for the applications

D. Grouping Compromise Scenarios

The initial verification of WireGuard using CryptoVerif [39]
considers 4 corruption scenarios for the Diffie-Hellman expo-
nents si, sr (static keys for the initiator and responder) and ei,
er (ephemeral keys for the initiator and responder) in separate
CryptoVerif files, allowing the compromise of all these keys
without compromising both the ephemeral and static keys of
the same principal. However, in practice, one does not know a
priori which corruption scenario will happen, so we need to
manually combine those results to get a security result valid in
all scenarios. In this work, we mechanize this part of the proof:
we group all these scenarios in a single file by corrupting
either si or ei (resp. sr or er) depending on a boolean test
and guessing which branch is taken. Then CryptoVerif gives
us directly a single security result valid in all scenarios.

E. Guidance and Runtime

Figure 3 gives, for each application of this section, the
number of CryptoVerif input files in column #f (separate files
may be used for different properties, compromise scenarios,
or protocol variants); the number of commands given to guide
the proof in each input file in column #c, not counting the
commands that just display the current game; and the total
runtime of CryptoVerif in all input files. The examples that
require the advanced treatment of compromise of Section V
(examples of Sections VI-A and VI-C; NoiseNK with PRF-
ODH, TLS 1.3 with pre-shared key (PSK) and corruption in
Section VI-B) require fairly detailed guidance, with more com-
mands than similar examples without compromise, basically
because we combine two proofs, the proof of authentication
before compromise, and the proof of the other properties. The
guidance is still much lighter than in tools like EasyCrypt, FCF,
and CryptHOL because CryptoVerif generates the cryptographic
games. When the number of commands is 0, the proof is fully
automatic. The runtime for WireGuard in Section VI-A is
specially high because it considers the compromise of the pre-
shared key in a variety of other compromise scenarios and two
variants of the protocol. In Section VI-D, we do not consider
the compromise of the pre-shared key and consider a single
variant of the protocol. The higher number of commands in

this example comes from grouping the 4 compromise scenarios:
the commands for each scenario have to be included.

VII. CONCLUSION

CryptoVerif now provides two proof strategies in order to
deal with dynamic key compromise. The basic one (Section II)
consists in including the compromise of the key in the
specification of cryptographic primitive itself. It allows us
to deal with dynamic key compromise without modifying
the tool CryptoVerif itself, but it has limitations, detailed in
Section II, that the second strategy removes. The advanced
strategy (Section V) relies on new commands and game
transformations: it consists in first focusing on the proof of
authentication properties, for which the compromise of the key
can be removed, and then using these properties in order to
prove forward secrecy in the presence of dynamic compromise.
This second strategy is illustrated in detail in Examples 4 to 6.
This strategy allowed us to fill gaps in previous case studies,
proving in particular the forward secrecy with respect to the
compromise of the pre-shared key in the PSK-DHE handshake
of TLS 1.3 Draft 18 and in the VPN protocol WireGuard.
The new game transformations are general enough that they
can also have other applications than dynamic compromise.
In particular, guessing the tested session is a common step in
cryptographic proofs and will be useful in other contexts.

CryptoVerif still has limitations. In particular, the size of
games tends to grow too fast, which limits its ability to deal
with large examples, especially because, when there is a test,
the code is duplicated from the test until the end of protocol.
Planned improvements include allowing game transformations
to work without duplicating code in this way; allowing internal
oracle calls in games, in order to share code between different
parts of the game; using composition results in order to make
proofs more modular. Moreover, some game transformations
could be generalized. For instance, a transformation merges
branches of a test when they execute the same code; the
detection that several branches execute equivalent code could
be made more flexible, by allowing reorderings of instructions.
CryptoVerif only considers blackbox adversaries: it does not
support proofs that manipulate the code of the adversary, such
as the forking lemma [46]. That limitation may turn out to be an
advantage by making it easier to consider quantum adversaries.

Acknowledgments: We thank Charlie Jacomme for helpful
comments on a draft of this paper and David Pointcheval for
help regarding the proof of forward secrecy of OEKE. This
work benefited from funding managed by the French National
Research Agency under the France 2030 programme with the
reference ANR-22-PECY-0006 (PEPR Cybersecurity SVP).

REFERENCES

[1] M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-based au-
thenticated key exchange in the three-party setting,” IEE Proceedings
Information Security, vol. 153, no. 1, pp. 27–39, Mar. 2006.

[2] M. R. Albrecht, K. G. Paterson, and G. J. Watson, “Plaintext recovery
attacks against SSH,” in IEEE S&P’09. IEEE, May 2009, pp. 16–26.

[3] J. B. Almeida, M. Barbosa, G. Barthe, M. Campagna, E. Cohen,
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