
Verification of Security Protocols
with Lists:

from Length One to Unbounded Length

Miriam Paiola and Bruno Blanchet

INRIA Paris-Rocquencourt
Inria, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, FRANCE

{Miriam.Paiola, Bruno.Blanchet}@inria.fr

Abstract

We present a novel, simple technique for proving secrecy properties for secu-
rity protocols that manipulate lists of unbounded length, for an unbounded number
of sessions. More specifically, our technique relies on the Horn clause approach
used in the automatic verifier ProVerif: we show that if a protocol is proven secure
by our technique with lists of length one, then it is secure for lists of unbounded
length. Interestingly, this theorem relies on approximations made by our verifica-
tion technique: in general, secrecy for lists of length one does not imply secrecy
for lists of unbounded length. Our result can be used in particular to prove secrecy
properties for group protocols with an unbounded number of participants and for
some XML protocols (web services) with ProVerif.

Keywords: Verification, group protocols, symbolic model, secrecy, ProVerif.

1 Introduction
Security protocols are protocols that rely on cryptographic primitives such as encryp-
tion and signatures for securing communication between several parties. They aim
at ensuring security properties such as secrecy or authentication. Historically, attacks
were often found against protocols that were thought correct. Furthermore, security
flaws cannot be detected by testing since they appear only in the presence of an at-
tacker. The confidence in these protocols can then be increased by a formal analysis
that proves the desired security properties. To ease formal verification, one often uses
the symbolic, so-called Dolev-Yao model [8], which abstracts from the details of cryp-
tographic primitives and considers messages as terms. In this work, we also rely on
this model.

The formal verification of security protocols with fixed-size data structures has been
extensively studied. However, the formal verification of protocols that manipulate more

1

complex data structures, such as lists, has been less studied and presents additional
difficulties: these complex data structures add another cause of undecidability.

In this work, we present a technique for proving secrecy properties for security
protocols that manipulate lists of unbounded length. This technique is based on the
Horn clause approach used in the automatic verifier ProVerif [1, 4]. ProVerif is an
automatic protocol verifier that takes as input a protocol, translates it into a represen-
tation in Horn clauses, and uses a resolution algorithm to determine whether a fact is
derivable from the clauses. One can then infer security properties of the protocol. For
instance, we use a fact att(M) to mean that the attacker may have the message M. If
att(s) is not derivable from the clauses, then s is secret. The main goal of this approach
is to prove security properties of protocols without bounding the number of sessions of
the protocol.

Like other protocol verifiers, ProVerif can analyze protocols with lists if we fix the
lengths of the lists a priori. However, if the protocol is verified only for some lengths,
attacks may exist for other values. So our goal is to prove the protocols for lists of
any length. To reach this goal, we extend the language of Horn clauses, introducing
a new kind of clauses, generalized Horn clauses, to be able to represent lists of any
length. We consider a class of protocols that manipulate list elements in a uniform
way. Because of this uniformity, one might intuitively think that secrecy for lists of
length one implies secrecy for lists of any length. We show that this intuition is not
exactly true: in general, secrecy for lists of length one does not imply secrecy for lists
of any length, as demonstrated in Sect. 4.3. However, we show that, for a certain class
of Horn clauses, if secrecy is proved by our Horn clause technique for lists of length
one, then secrecy also holds for lists of unbounded length. This result relies on the
sound abstractions made by the translation into Horn clauses. Additionally, we provide
an approximation algorithm that can transform generalized Horn clauses into clauses
of the class on which our result holds. All facts derivable from the initial clauses are
also derivable from the clauses generated by the approximation algorithm, so that we
can prove secrecy on the latter clauses, and conclude secrecy for the initial clauses.
Our result therefore provides an easy way of obtaining a strong security guarantee: we
prove using ProVerif that att(s) is not derivable from the clauses for lists of length one,
and we can then immediately conclude that secrecy holds for lists of unbounded length,
with an unbounded number of sessions.

Applications of our results include in particular proving secrecy properties for some
group protocols that manipulate unbounded lists, with an unbounded number of partic-
ipants. In this paper, we focus mainly on group protocols and illustrate our work on the
Asokan-Ginzboorg protocol [2]. We prove secrecy of the session key exchanged in this
protocol by verifying with ProVerif its version with lists of length one and the size of
the group equal to one. In our analysis, we only considered an external attacker: this is
sufficient for this example. (Our framework still allows one to model corrupted parties
if desired. We detail these points in Section 3.5. We do not consider dynamic cor-
ruption in this paper.) Another possible application is the treatment of XML protocols
such as web services, XML documents being modeled using possibly nested lists.

2

Related Work The first approach considered for proving protocols with recursive
data structures was interactive theorem proving: Paulson [17] and Bryans et al [5] study
a recursive authentication protocol for an unbounded number of participants, using
Isabelle/HOL for [17], and rank functions and PVS for [5]. However, this approach
requires considerable human effort.

Meadows et al [16] used the NRL protocol analyzer (NPA), based on a combination
of model checking and theorem-proving techniques, to verify the Group Domain of
Interpretation (GDOI) protocol suite. NPA could not handle the infinite data structures
required for modeling general group protocols, so a single key was used instead of a
key hierarchy. Several problems including type flaw attacks were found in the protocol
and fixed in later versions of GDOI. The early verification of the A.GDH-2 protocol
using NPA [14] seems to have missed attacks [18], although the tool supports the Diffie-
Hellman exponentiation [15].

Steel and Bundy [20] have used CORAL, a tool for finding counterexamples to
incorrect inductive conjectures, to model protocols for group key agreement and group
key management, without any restrictions on the scenario. They have discovered new
attacks against several group protocols, but cannot prove that protocols are correct.

Kremer, Mercier, and Treinen [11] verify secrecy for group protocols with modular
exponentiation and XOR, for any number of participants and an unbounded number of
sessions, but only for a passive adversary (eavesdropper).

Several works consider the case of a bounded number of sessions. Pereira and
Quisquater [18] discovered several attacks on the CLIQUES protocol suite [21], which
extends the Diffie-Hellman key agreement method to support dynamic group opera-
tions (A-GDH). They converted the problem of the verification of security properties
to the resolution of linear equation systems. In [19], they proved a first generic inse-
curity result for authentication protocols showing that it is impossible to design a cor-
rect authenticated group key agreement protocol based on the A-GDH. Truderung [22]
showed a decidability result (in NEXPTIME) for secrecy in recursive protocols. This
result was extended to a class of recursive protocols with XOR [12] in 3-NEXPTIME.
Chridi et al [6, 7] present an extension of the constraint-based approach in symbolic
protocol verification to handle a class of protocols (Well-Tagged protocols with Au-
tonomous keys) with unbounded lists in messages. They prove that the insecurity
problem for Well-Tagged protocols with Autonomous keys is decidable for a bounded
number of sessions.

We consider a class of protocols that includes the one of [6, 7] but, instead of
proving decidability for a bounded number of sessions, we provide a technique that
can prove protocols for an unbounded number of sessions and any number of protocol
participants, using abstractions.

Outline The next section recalls the technique used by ProVerif. In Sect. 3, we for-
mally define generalized Horn clauses, and their semantics by giving their translation
into Horn clauses. Additionally, we introduce our running example and motivate the
introduction of this new type of clauses. In Sect. 4, we show our main theorem: for a
class of generalized Horn clauses, if att(s) is not derivable for lists of length one, then
it is also not derivable for lists of any length. In Sect. 5, we provide an approxima-

3

tion algorithm for transforming generalized Horn clauses into clauses that satisfy the
hypothesis of our main theorem.

2 A Reminder on ProVerif
ProVerif translates the initial protocol into a set of Horn clauses. The syntax of these
clauses is defined in Fig. 1. The patterns represent messages that are exchanged be-

p ::= patterns
x,y,z,v,w variable
a[p1, . . . , pn] name
f (p1, . . . , pn) constructor application

F ::= att(p) facts

R ::= F1∧·· ·∧Fn⇒ F Horn clause

Figure 1: Syntax of Horn clauses

tween participants of the protocol. A variable can represent any pattern. Names repre-
sent atomic values, such as keys and nonces. Each participant can create new names.
Instead of creating a fresh name at each run of the protocol, the created names are con-
sidered as functions of the messages previously received by the principal that creates
it, represented by the pattern a[p1, . . . , pn]. Hence names are distinguished only when
they are created after receiving different messages. As shown in, e.g., [1], this is a
sound approximation. When a name has no arguments, we write a instead of a[]. We
use v,w,x,y,z for variables and other identifiers a,b,c,e,L, pw,r,s, . . . for names.

The fact att(p) means that the attacker may have the pattern (message) p. 1 A
clause F1∧·· ·∧Fn⇒ F means that if all facts Fi are true then the conclusion F is also
true. In a clause, all variables are universally quantified. We use R for a clause, H for
its hypothesis, and C for its conclusion. The hypothesis of a clause is considered as a
multiset of facts. A clause with no hypothesis⇒ F is written simply F .

Cryptographic primitives are represented by functions and perfect cryptography is
assumed, that is, the attacker can perform cryptographic operations only if he has the
required keys.

There are two kinds of functions: constructors and destructors. A constructor f
is a function that explicitly appears in the patterns that represent messages and builds
new patterns of the form f (p1, . . . , pn). Destructors manipulate patterns. A destruc-
tor g is defined by a set def (g) of rewrite rules of the form g(p1, . . . , pn)→ p where
p1, . . . , pn, p are patterns with only variables and constructors and the variables of p ap-
pear in p1, . . . , pn. Using constructors and destructors, one can represent data structures
and cryptographic operations. For instance, senc(x,y) is the constructor that represents
the symmetric key encryption of the message x under the key y. The corresponding

1ProVerif uses another predicate to model private channels: the fact mess(c,m) means that the message m
may be sent on channel c. We believe that our result holds also for this predicate. We focus on the predicate
att since it is the most important: it is the only predicate needed when all channels are public, which happens
in many examples.

4

destructor sdec(x′,y) returns the decryption of x′ if x′ is a message encrypted under y.
The rewrite rule that defines sdec is

sdec(senc(x,y),y)→ x.

As another example, we can model probabilistic symmetric encryption with a ternary
constructor that takes the random coin used inside the encryption algorithm as an addi-
tional input: penc(x,y,r) represents the probabilistic encryption of the message x under
the symmetric key y with random coin r. The corresponding destructor pdec(x′,y) re-
turns the decryption of x′ if x′ is a message encrypted under y. The rewrite rule that
defines pdec is

pdec(penc(x,y,r),y)→ x.

A protocol is represented by three sets of Horn clauses:

1. initial knowledge of the attacker: we have a fact att(p) for each p initially known
by the attacker.

2. abilities of the attacker:

• att(a)

• for each constructor f of arity n:
att(x1)∧·· ·∧ att(xn)⇒ att(f (x1, . . .xn))

• for each destructor g,
for each rule g(p1, . . . , pn)→ p in def (g):

att(p1)∧·· ·∧ att(pn)⇒ att(p)

The first clause represents the ability of the attacker to create fresh names a: all
fresh names that the adversary may create are represented by the single name a.
The other clauses mean that if the attacker has some messages, then he can apply
constructors and destructors to them.

3. the protocol itself: for each message p of the protocol sent by agent A, we create
the clause att(p1)∧ ·· · ∧ att(pn)⇒ att(p), where p1, . . . , pn are patterns repre-
senting the messages received by A before sending message p. Indeed, if the
attacker has p1, . . . , pn, then it can send them to A and intercept A’s reply p.

This representation of protocols by Horn clauses is approximate, in particular be-
cause Horn clauses that represent the protocol itself can be applied any number of
times instead of exactly once per session. However, it is sound: if att(p) cannot be
derived from the clauses, then the protocol preserves the secrecy of p. (This is proved
by [1, Theorem 7.2.3] when the clauses are generated from a pi calculus model of the
protocol.)

ProVerif determines whether att(p) is derivable from the clauses using resolution
with free selection [3]: we combine pairs of clauses by resolution; the literals upon
which we perform resolution are chosen by a selection function. Next, we define when
a given fact is derivable from a given set of clauses.

5

Definition 1 (Subsumption). We say that R1 = H1⇒C1 subsumes R2 = H2⇒C2, and
we write R1 w R2, if and only if there exists a substitution σ such that σC1 = C2 and
σH1 ⊆ H2 (multiset inclusion).

We say that R1 subsumes R2 when R2 can be obtained by adding hypotheses to a
particular instance of R1. In this case, all facts that can be derived by R2 can also be
derived by R1, so R2 can be eliminated.

subroot

root

FnF1

.

. . .
. . .

. . .

R′

R

F

F0

Figure 2: Derivation of F

Definition 2 (Derivability). Let F be a closed fact, that is, a fact without variable. Let
R be a set of clauses. F is derivable from R if and only if there exists a derivation of
F from R, that is, a finite tree defined as follows:

1. Its nodes (except the root) are labeled by clauses R ∈R;

2. Its edges are labeled by closed facts;

3. If the tree contains a node labeled R with one incoming edge labeled by F0 and
n outgoing edges labeled by F1, . . . ,Fn, then Rw F1∧·· ·∧Fn⇒ F0.

4. The root has one outgoing edge labeled by F . The unique son of the root is
named the subroot.

This definition is illustrated in Fig. 2. In a derivation, if there is a node labeled by
R with one incoming edge labeled by F0 and n outgoing edges F1, . . . ,Fn then F0 can
be derived by F1, . . . ,Fn by the clause R. Therefore there exists a derivation of F from
R if and only if F can be derived from clauses in R (in classical logic).

6

3 Abstract Representation of Protocols by Generalized
Horn Clauses

This section is devoted to the abstract representation of protocols with lists by gener-
alized Horn clauses. After introducing a running example and motivating our choices,
we give the syntax and semantics of generalized Horn clauses.

3.1 Running Example
As a running example, we use a version of the Asokan-Ginzboorg protocol [2] for key
agreement, also used in [7, 20]. Let the set of players be {ai, i = 1, . . . ,N} for N ≥ 1
and L be the leader. The protocol describes the establishment of a session key between
the leader and the other N participants.

(1) L→ ALL : (L,{|e|}pw)
(2) ai→ L : (ai,{|(ri,si)|}e)
(3) L→ ai : {|(s1, . . . ,sN ,s′)|}ri

(4) ai→ L : (ai,{|(si,h(s1, . . . ,sN ,s′))|}K),
for some i, where K = f (s1, . . . ,sN ,s′)

At the beginning, the participants share the knowledge of a password pw and of two
N+1-input hash functions f and h. (In this paper, we ignore dictionary attacks against
pw and consider pw as a strong key.) First, the leader sends to all other participants his
identity paired with a fresh key e encrypted with the password pw. Each participant ai
for i ∈ {1, . . . ,N} decrypts {|e|}pw and then creates a fresh key ri and a fresh nonce si
which will be his contribution to the final session key. Then he sends {|(ri,si)|}e paired
with his identity. When L receives this message, he decrypts it and assumes that it has
been created by ai. After receiving all N messages, the leader creates his contribution
s′ to the final key and sends to each participant ai for i ∈ {1, . . . ,N} the list of all
contributions encrypted with the key ri that ai previously sent. If step 3 is completed
successfully, each participant can compute the session key K = f (s1, . . . ,sN ,s′). In the
end, for key confirmation, the leader randomly picks one of the other players and asks
him for step 4: ai computes the session key K as f (s1, . . . ,sN ,s′) and uses it to encrypt
a pair made up by his contribution si and the hash h(s1, . . . ,sN ,s′). He then sends this
encryption paired with his identity. The server verifies this message by decrypting it.

3.2 Need for Generalizing Horn Clauses
We would like to model the example protocol of Sect. 3.1 by Horn clauses and use
ProVerif to verify it. Since we consider a parametric group size, we encounter several
problems. First, we have to deal with lists whose length is not fixed but is the size N of
the group, such as s1, . . . ,sN in message 3 of the example. Next, we need conjunctions
of N facts (and N is again not fixed) to represent that some agents receive one message
from each group member. For example, when translating message 3 into Horn clauses,
the leader L expects messages 2 of the form (ai,{|(vi,wi)|}e) from each ai. (The leader
cannot verify the incoming values of ri, si so they become variables vi, wi.) Then L

7

replies with message 3 {|(w1, . . . ,wN ,s′)|}vi where s′ is a fresh name generated by L,
modeled as a function of the previously received messages s′[v1,w1, . . . ,vN ,wN]. The
attacker can send the incoming messages and intercept L’s reply, so we find the clause

att((a1,senc((v1,w1),e)))∧·· ·∧ att((aN ,senc((vN ,wN),e)))⇒
att(senc((w1, . . . ,wN ,s′[v1,w1, . . . ,vN ,wN]),vi)).

(1)

where senc is the encryption function. We solve those two problems by adding two
new constructs to the syntax of Horn clauses: list(i≤ N, pi) for the list of elements pi
with index i in the set {1, . . . ,N}, that is, list(i≤N, pi) stands for 〈p1, . . . , pN〉 (inspired
by the mpair construct of [7]) and

∧
i1≤N,...,ih≤N F for the conjunction of facts F with

indices i1, . . . , ih in {1, . . . ,N}.
For instance, with these two new constructs, we can model clause (1) as:∧

j≤N att((a j,senc((v j,w j),e)))⇒
att(senc((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))]),vi))

In conclusions, we do not use the construct
∧

i1≤N,...,ih≤N F but write F directly, leav-
ing indices in F free; this has the desired meaning since free indices are universally
quantified, like other free variables of the clause.

3.3 Syntax
This section formally defines the syntax and semantics of generalized Horn clauses.

pG,s, t ::= patterns
xi1,...,ih variable (h≥ 0)
f (pG

1 , . . . , pG
l) function application

ai[pG
1 , . . . , pG

l] indexed names
list(i≤M, pG) list constructor

FG ::=
∧

i1≤M1,...,ih≤Mh
att(pG) facts

RG ::= FG
1 ∧·· ·∧FG

n ⇒ att(pG) generalized Horn clause

Figure 3: Syntax of our protocol representation

The syntax of these new clauses is defined in Fig. 3. The patterns pG that represent
messages are enriched with several new constructs. The variables may have indices
xi1,...,ih . The pattern for function application f (pG

1 , . . . , pG
l) includes not only construc-

tor application but also names a[pG
1 , . . . , pG

l] where a is a name without index. The
indexed name ai[pG

1 , . . . , pG
l] represents a name created by the group member number i.

We added a particular constructor list(i≤M, pG) to represent lists of length M, where
M is an unknown bound.

In the Asokan-Ginzboorg protocol, we can write, for example, at message 3:
senc((list(j ≤ N,s j),s′),ri) for senc((s1, . . . ,sN ,s′),ri). The last element s′ is not in-
cluded in the list list(j≤N,s j), to distinguish s′ that has just been created by the leader

8

from si with i = 1, . . . ,N that has just been received by him: s1, . . . ,sN are treated in a
uniform way while s′ is treated differently.

We extend facts to model the possibility of having a conjunction of facts depend-
ing on indices, so that the syntax for facts becomes

∧
i1≤M1,...,ih≤Mh

att(pG). For ex-
ample, intuitively,

∧
i≤M att(pG) represents att(pG{i 7→ 1})∧ ·· · ∧ att(pG{i 7→ M}),

where pG{i 7→ i′} denotes pG in which i has been replaced with i′. The conjunction∧
i1≤M1,...,ih≤Mh

with h = 0 is omitted: the fact is then simply att(pG).
The generalized Horn clause FG

1 ∧ ·· · ∧FG
n ⇒ att(pG) means that, if the facts FG

1 ,
. . . , FG

n hold, then the fact att(pG) also holds. The conclusion of a clause does not
contain a conjunction

∧
i1≤M1,...,ih≤Mh

: we can simply leave the indices of att(pG) free
to mean that att(pG) can be concluded for any value of these indices.

3.4 Representation of the Protocol
The representation of the abilities of the attacker includes the clauses given in Sect. 2.
For our running example, att(ai) and att(L) represent that the attacker initially knows
ai and L, and the clauses

att(a)
att(x)∧ att(y)⇒ att(senc(x,y))

att(senc(x,y))∧ att(y)⇒ att(x)
att(x)⇒ att(f (x))

att(x)⇒ att(h(x))
att(x)∧ att(y)⇒ att((x,y))
att((x,y))⇒ att(x)
att((x,y))⇒ att(y)

represent that the attacker can create fresh names, encrypt and decrypt messages, apply
hash functions, compose and decompose pairs.

In addition, we have clauses for list, which generalize clauses for pairs:∧
i≤M att(xi)⇒ att(list(j ≤M,x j)) (2)

att(list(j ≤M,x j))⇒ att(xi) (3)

Let us now give the clauses that represent the protocol itself. We suppose that each
principal always plays the same role in the protocol; we could build a more complex
model in which the same principal can play several roles by adding clauses (see Sec-
tion 3.5 for more details). The leader L sends the first message (L,{|e|}pw) and the
attacker intercepts it, so we have the fact:

att((L,senc(e, pw))).

Each agent ai with i = 1, . . . ,N sends message 2 if he has received a correct mes-
sage 1. From the point of view of ai, messages 1 and 2 are:

(1) L→ ai : (L,{|y|}pw)
(2) ai→ L : (ai,{|(ri,si)|}y)

9

Each agent ai cannot verify the value of the key e chosen by the leader, so it becomes
a variable y. After recieiving a message of the form (L,{|y|}pw), ai creates two new
names ri and si, encoded as functions of the key y just received and then replies with
message 2. If the attacker sends the first message (L,{|y|}pw) to ai, ai replies with
(ai,{|(ri,si)|}y), and the attacker can intercept this reply, so we obtain the clause:

att((L,senc(y, pw)))⇒ att((ai,senc((ri[y],si[y]),y))) (4)

The leader sends message 3 after receiving a correct message 2 from each agent ai.
The messages 2 and 3 of the protocol as seen from the leader’s side are:

(2) ai→ L : (ai,{|(vi,wi)|}e)
(3) L→ ai : {|(w1, . . . ,wN ,s′)|}vi

The leader expects from each ai with i= 1, . . . ,N a message of the form (ai,{|(vi,wi)|}e).
He creates the list of all the contributions adding his own contribution s′, modeled as
a function of the previously received messages s′[v1,w1, . . . ,vN ,wN]. Then he sends
this list to each ai encrypting it with vi, so we obtain the clause (1) already given in
Sect. 3.2, which we adapt using list and conjunctions over the set of participants:∧

j≤N att((a j,senc((v j,w j),e)))⇒
att(senc((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))]),vi))

(5)

Finally, one agent ai sends message 4 if he received correct messages 1 and 3. From
his point of view, messages 1, 3 and 4 of the protocol are:

(1) L→ ai : (L,{|y|}pw)
(3) L→ ai : {|(z1, . . . ,zN ,z)|}ri

(4) ai→ L : (ai,{|(si,h(z1, . . . ,zN ,z))|}K),
for some i, where K = f (z1, . . . ,zN ,z)

If ai has received a message 1 of the form (L,{|y|}pw) and a message 3 of the form
{|(z1, . . . ,zN ,z′)|}ri encoded as {|(list(j≤ N,z j),z′)|}ri[y],

2 then ai computes the session
key K = f ((list(j ≤ N,z j),z′)) and one ai sends to the leader message 4: (ai,{|(si[y],
h((list(j ≤ N,z j),z′)))|}K). Hence the final clause is:

att((L,senc(y, pw)))∧ att(senc((list(j ≤ N,z j),z′),ri[y]))⇒
att((ai,senc((si[y],h((list(j ≤ N,z j),z′))),K)))

where K = f ((list(j ≤ N,z j),z′))
(6)

2In the protocol, the participant ai can check whether the component zi of the list is his own contribution
si[y], but cannot check the other components. Our representation of lists does not allow us to model such a
test: in fact, we cannot substitute ai directly because, in the construct for lists list(j ≤ N,z j), all elements
z j need to have the same form. Moreover, we have built examples of protocols with such tests, for which
our result does not hold: intuitively, the test breaks the uniform treatment of the elements of lists, so proving
secrecy by the Horn clause technique for lists of length one does not imply secrecy for lists of unbounded
length. We shall prove secrecy without the test on zi; this implies a fortiori secrecy with this test, because
the clause without test subsumes the one with the test. In general, removing these tests may obviously lead
to false attacks.

10

We want to prove the secrecy of the session key K. However, this key depends
on data received by protocol participants, so we cannot simply test the derivability of
att(K). We can use the following trick: to test the secrecy of the key K that participant
ai has, we consider that ai sends the encryption {|s′′a |}K of a secret s′′a under K. If K is
secret, the adversary will not be able to decrypt the message, so s′′a will remain secret.
Therefore, we add the clause

att((L,senc(y, pw)))∧ att(senc((list(j ≤ N,z j),z′),ri[y]))⇒
att(senc(s′′a , f ((list(j ≤ N,z j),z′))))

(7)

to model the output of {|s′′a |}K , and we test the derivability of att(s′′a). We have also used
a similar clause to prove the secrecy of the key K that L has; in this case we consider
that leader sends the encryption {|s′′L|}K of a secret s′′L under K, and the key K that L has
is secret if and only if s′′L is secret:∧

j≤N att((a j,senc((v j,w j),e)))∧
att((ai,senc((wi,h((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))]))),

f ((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))])))))⇒
att(senc(s′′L, f ((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))]))))

(8)

3.5 On Corruption and Participants Playing Multiple Roles
In the previous model, we have no explicit model for corrupted participants. In the par-
ticular case of the Asokan-Ginzboorg protocol, statically corrupted participants come
for free. Indeed, we are going to show the secrecy of the session keys only for a session
between honest participants, since for other sessions, the adversary obviously obtains
the session keys via the corrupted participants. Other sessions, which involve a differ-
ent group containing at least one corrupted participant, will use a different password
pw′. We can assume that the adversary has this password. Hence, the adversary has
all secrets needed to perform all actions of these sessions (for both the honest and the
corrupted participants), so we do not need to add Horn clauses for them.

In the general case, however, a more complex model may be needed. For example,
a protocol may use a long-term secret key for each participant, which is used both in
sessions with only honest participants and in sessions with some corrupted participants.
In this case, we need to model sessions that mix honest and corrupted participants. This
can be done by modeling each honest participant so that it accepts to talk both to honest
and dishonest participants, for instance by receiving the identities of its interlocutors
from the adversary as the first message of the session. (This is a technique often used
in ProVerif models of protocols.)

Furthermore, we can also model that a certain role is played by several participants
(possibly including corrupted participants), for instance as follows. We use a predicate
id(idname,key1, . . . ,keyn) to represent a participant of identity idname, that uses long-
term keys key1, . . . ,keyn (these may include secret and public keys). We define as many
facts as needed for this predicate, which may include honest and dishonest participants.
For dishonest participants, we give the keys to the adversary by adding the appropriate
att facts. We can define infinite sets of participants by including a variable in the terms

11

i : [1,M] ∈ Γ

Γ ` i : [1,M]
(EnvIndex)

x : [1,M1]×·· ·× [1,Mh] ∈ Γ

Γ ` x : [1,M1]×·· ·× [1,Mh]
(EnvVar)

Γ ` x : [1,M1]×·· ·× [1,Mh] Γ ` i1 : [1,M1] . . .Γ ` ih : [1,Mh]

Γ ` xi1,...,ih
(Var)

Γ ` pG
1 . . .Γ ` pG

h

Γ ` f (pG
1 , . . . , pG

h)
(Fun)

Γ ` pG
1 . . .Γ ` pG

h Γ ` i : [1,N]

Γ ` ai[pG
1 , . . . , pG

h]
(Name)

Γ, i : [1,M] ` pG

Γ ` list(i≤M, pG)
(List)

Γ, i1 : [1,M1], . . . , ih : [1,Mh] ` pG

Γ `
∧

i1≤M1,...,ih≤Mh
att(pG)

(Fact)

Γ ` FG
1 . . .Γ ` FG

n Γ ` FG

Γ ` FG
1 ∧·· ·∧FG

n ⇒ FG
(Clause)

Figure 4: Type system for generalized Horn clauses

that define the identities and keys. We define the Horn clauses for the various roles
by adding hypotheses id(xid ,k1, . . . ,kn) to the standard Horn clauses for these roles
and using the variables xid ,k1, . . . ,kn in place of the respective keys of the considered
role. This yields an economical model of a role that can be played by any participant
with an identity among those defined by the predicate id. To fit our framework for-
mally, since we use att as only predicate, we can encode the facts id(p0, . . . , pn) as
att(fid(p0, . . . , pn)) where fid is a private function, that is, the adversary does not have
clauses to compute fid nor to decompose it.

3.6 Type System for the New Clauses
In this section, we define a simple type system for the generalized Horn clauses. The
goal of this type system is to guarantee that all variables use indices that vary in the
appropriate interval. We shall see in Sect. 4 that this type system is also very helpful in
order to establish our main result.

Definition 3. An index i is bound if:

• it appears as an index of a conjunction defining a fact, so, for instance, in the fact∧
i1≤M1,...,ih≤Mh

att(pG), i1, . . . , ih are bound in att(pG) .

• it appears as an index for a list constructor, that is, in the pattern list(i≤M, pG),
i is bound in pG.

Indices that are not bound are free.

For simplicity, we suppose that the bound indices of clauses have pairwise distinct
names, and names distinct from the names of free indices. This can easily be guaran-

12

teed by renaming the bound indices if needed. This renaming is not performed in the
examples given in the paper, because it would use too many letters.

In the type system defined in Fig. 4, the type environment Γ is a list of type decla-
rations:

• i : [1,M] means that i is of type [1,M], that is, intuitively, the value of index i can
vary between 1 and the value of the bound M.

• x : [1,M1]× ·· · × [1,Mh] means that the variable x expects indices of types
[1,M1], . . . , [1,Mh].

The type system defines the judgments:

• Γ ` i : [1,M], which means that i has type [1,M] in environment Γ, by rule (En-
vIndex);

• Γ` x : [1,M1]×·· ·× [1,Mh], which means that x expects indices of types [1,M1],
. . . , [1,Mh] according to environment Γ, by rule (EnvVar);

• Γ ` pG, Γ ` FG, Γ ` RG, which mean that pG, FG, RG, respectively, are well
typed in environment Γ.

Most type rules are straightforward. For instance, the rule (Var) means that xi1,...,ih is
well typed when the types expected by x for its indices match the types of i1, . . . , ih.
The rule (Name) deserves an additional explanation: we have no information in Γ to
set the type of the index of name a, and hence the index of a can have any type. A
priori, it is obviously expected that the index of a certain name a always has the same
type. However, the additional freedom given by the type rule will be useful in the rest
of the paper: the transformations of Sect. 5 can create clauses in which the same name
a has indices of different types. The formal meaning of such clauses can be defined by
assuming that the name a exists for indices up to the value of the largest bound.

It is easy to verify that the clauses of Sect. 3.4 are well typed in our type sys-
tem. Clause (2) is well typed in the environment x : [1,M], (3) in the environment
x : [1,M], i : [1,M], and the other clauses in the environment in which all free indices
have type [1,N] and the variables expect indices of type [1,N].

3.7 Translation from Generalized Horn Clauses to Horn Clauses
A generalized Horn clause represents several Horn clauses: for each value of the
bounds M and of the free indices i that occur in a generalized Horn clause RG, RG

corresponds to a certain Horn clause. This section formally defines this correspon-
dence.

The syntax of Horn clauses obtained by translation of generalized Horn clauses is
given in Fig. 5. This syntax is similar to that of initial Horn clauses (Fig. 1) except
that variables and names can now have indices ı, which are integer values, and that
we include a pattern 〈p1, . . . ,ph〉 for representing lists (which will be generated by
translation of list).

13

p ::= patterns
xı1,...,ıh variable
aı[p1, . . . ,ph] name
f (p1, . . . ,ph) constructor application
〈p1, . . . ,ph〉 list

F ::= att(p) facts

R ::= F1∧ . . .∧Fn⇒ F Horn clauses

Figure 5: Syntax of Horn clauses

Definition 4. Given a generalized Horn clause RG well typed in Γ, an environment T
for RG is a function that associates to each bound M a fixed positive integer MT and to
each free index i that appears in RG, an index iT ∈ {1, . . . ,MT}, if Γ ` i : [1,M].

Given an environment T and values ı1, . . . , ıh, we write T[i1 7→ ı1, . . . , ih 7→ ıh] for
the environment that associates to indices i1, . . . , ih the values ı1, . . . , ıh respectively
and that maps all other indices as in T .

Given an environment T , a generalized Horn clause RG is translated into the stan-
dard Horn clause RGT defined next. We denote respectively pGT ,FGT , . . . the transla-
tion of pG,FG, . . . using the environment T .

The translation of a pattern pG is defined as follows:

• (xi1,...,ih)
T = xiT1 ,...,i

T
h
.

• f (pG
1 , . . . , pG

l)
T = f (pGT

1 , . . . , pGT
l).

• ai[pG
1 , . . . , pG

l]
T = aiT [p

GT
1 , . . . , pGT

l].

• list(i≤M, pG)T = 〈pGT[i7→1], . . . , pGT[i 7→MT]〉.

The translation of list is a list; we stress that this translation uses a list symbol 〈. . .〉
different from the tuple symbol (. . .): list is the only construct that can introduce the
list symbol 〈. . .〉. This is important to make sure that confusions between tuples that
may occur in the protocol and list do not occur for particular list lengths. In the im-
plementation of the protocol, one must also make sure to use distinct encodings for list
and for tuples.

The translation of a fact FG =
∧

i1≤M1,...,ih≤Mh
att(pG) is

FGT = att(p1)∧ . . .∧ att(pk)

where {p1, . . . , pk} = {pGT ′ | T ′ = T[i1 7→ ı1, . . . , ih 7→ ıh] where ı j ∈ {1, . . . ,MT
j } for

all j in {1, . . . ,h}}, and (FG
1 ∧·· ·∧FG

n)T = FGT
1 ∧·· ·∧FGT

n .
Finally, we define the translation of the generalized Horn clause RG = HG ⇒

att(pG) as RGT = HGT ⇒ att(pGT).
For instance, the translation of the clause (5) in the environment T = {N 7→ 1, i 7→

1} is
att((a1,senc((v1,w1),e)))⇒ att(senc((〈w1〉,s′[〈(v1,w1)〉]),v1)).

14

In the environment T = {N 7→ 2, i 7→ 1}, it is

att((a1,senc((v1,w1),e)))∧ att((a2,senc((v2,w2),e)))⇒
att(senc((〈w1,w2〉,s′[〈(v1,w1),(v2,w2)〉]),v1)).

When RG is a set of generalized Horn clauses, we define RGT = {RGT | RG ∈
RG, T is an environment for RG}. In terms of abstract interpretation, the sets of gen-
eralized Horn clauses ordered by inclusion constitute the abstract domain, the sets of
Horn clauses ordered by inclusion the concrete domain, and RGT is the concretiza-
tion of RG. The set RGT includes clauses translated for any values of the bounds. In
our running example, for instance, this allows one to consider several sessions of the
protocol that have different group sizes N, and interactions between such sessions.

4 From Any Length to Length One
In this section, we define a mapping from lists of any length to lists of length one, and
show that derivability for lists of any length implies derivability for lists of length one,
for a particular class of Horn clauses.

4.1 Main Result
Given a generalized Horn clause RG, there exists only one environment T for RG such
that all bounds are equal to 1. Hence by now we use RG1 for the only possible transla-
tion of RG when all bounds are 1. We define RG1 = {RG1 | RG ∈RG}.

Next, we define a translation from clauses in which bounds can have any value,
following the syntax of Fig. 5, to clauses in which the bounds are fixed to 1:

I(p) =



{x1,...,1︸︷︷︸
h

} if p = xı1,...,ıh

{ f (p′1, . . . , p′h) | p′1 ∈ I(p1), . . . , p′h ∈ I(ph)} if p = f (p1, . . . ,ph)

{a1[p′1, . . . , p′h] | p′1 ∈ I(p1), . . . , p′h ∈ I(ph)} if p = aı[p1, . . . ,ph]

{〈p〉 | p ∈ I(p1)∪·· ·∪ I(ph)} if p = 〈p1, . . . ,ph〉

This translation maps all indices of variables and names to 1. The translation of a
list is a list with one element, containing the translation of any element of the initial
list. Several choices are possible for the translation of a list; I(p) returns the set of all
possible patterns.

Given a fact F = att(p), its translation when the bounds are fixed to 1 is I(att(p)) =
{att(p) | p ∈ I(p)} Given a conjunction of facts F1 ∧ ·· · ∧Fh, its translation when the
bounds are fixed to 1 is I(F1∧·· ·∧Fh) = I(F1)∪·· ·∪ I(Fh).

We say that a term or fact is linear when it contains at most one occurrence of each
variable x (with any indices, so it cannot contain xi and x j for instance). Finally, we
can state the main theorem of our paper:

Theorem 1. Let RG be a set of generalized Horn clauses such that, for each clause
RG ∈RG, RG is well typed, that is, there exists Γ such that Γ ` RG, with the following
conditions:

15

1. the free indices of RG have pairwise distinct types in Γ;

2. the conclusion of RG is linear and the bound indices in the conclusion of RG have
pairwise distinct bounds, and bounds different from the bounds of free indices of
RG in Γ.

For all facts F, if F is derivable from RGT , then for all F ∈ I(F), F is derivable from
RG1.

If we show that, for some F ∈ I(F), F is not derivable from RG1, then using this
theorem, F is not derivable from RGT . Suppose that we want to show that s is secret
in a protocol represented by the clauses RG. We show using for instance ProVerif that
att(s) is not derivable from RG1, that is, we prove secrecy when the bounds are all fixed
to 1. By Theorem 1, we conclude that att(s) is not derivable from RGT , so we obtain
secrecy for any bounds.

Unfortunately, this theorem does not apply to all Horn clauses: Hypotheses 1 and 2
have to be satisfied. In terms of protocols, the condition that bound indices of the
conclusion have different types means that each sent message does not contain two
lists of the same length. The free indices are typically indices inside a group of protocol
participants, and we generally have a single free index ranging in this group; this index
should have a bound different from the length of lists in sent messages, that is, the
number of members of the group should be different from the length of lists in sent
messages. The clauses of our running example do not satisfy these hypotheses, as we
consider several lists of the same length as the number of group members. We shall see
in Sect. 5 how to transform the clauses so that they satisfy the required hypotheses.

4.2 Proof of Theorem 1
The proof of Theorem 1 proceeds by building a derivation of F from RG1, from a
derivation of F from RGT , by induction on this derivation. Informally, the derivation
of F from RG1 is obtained by applying I to the derivation of F from RGT . If F is
derived by RGT = HGT ⇒ CGT , F is an instance of CGT by a substitution σ : F =
σCGT ; we show that any F ∈ I(F) is an instance of CG1 by a substitution σ ′ obtained
from σ (Lemma 1 and Corollary 1): F = σ ′CG1. Hence, in order to derive F using
RG1 =HG1⇒CG1, we need to derive σ ′HG1 from RG1, knowing a derivation of σHGT

from RGT . Informally, to show that this is possible, we prove that σ ′HG1 ⊆ I(σHGT)
(Lemma 3 and Corollary 2) and conclude by induction. Next, we fomally detail this
proof.

First, we define how the substitution σ ′ (for bounds fixed to 1) is computed from σ

(for any bounds): σ ′ ∈ IΓ,τ(σ), as defined next.

Definition 5. Suppose given a clause RG (resp. a fact FG, a pattern pG) well typed
in Γ. We define the set of types Types(Γ ` RG): [1,M] ∈ Types(Γ ` RG) if and only if
i : [1,M] ∈ Γ for some index i free in RG, or M appears as bound in list(i ≤M, pG) or
in

∧
...,i≤M,... att(pG) in RG.

Next, we define a function τ , which associates to each type an index value. Given
an environment T , we say that τ is consistent with T for Γ ` RG when τ is defined on
Types(Γ ` RG) and, for each type [1,M] ∈ Types(Γ ` RG), we have:

16

• 1≤ τ([1,M])≤MT

• iT = τ([1,M]) if i is a free index of RG and Γ ` i : [1,M].

We consider closed substitutions, that is, substitutions that map the variables in
their domain to closed patterns, and are not defined on other variables. We denote the
domain of the substitution σ by dom(σ). We designate by fv(RG), fv(pG) the free
variables of a clause, resp. pattern.

Given a closed substitution σ , we define the domain of the translated substitutions
domI(σ) = {x1,...,1︸︷︷︸

h

| x−,...,−︸ ︷︷ ︸
h

∈ dom(σ)}.

Given a closed substitution σ such that dom(σ) = fv(RGT) and a function τ consis-
tent with T for Γ ` RG, the translation IΓ,τ(σ) of the substitution σ is the set of closed
substitutions σ ′ such that:

• dom(σ ′) = domI(σ),

• ∀x1,...,1︸︷︷︸
h

∈ domI(σ), σ ′x1,...,1︸︷︷︸
h

∈ I(σxı1,...,ıh) where Γ ` x : [1,M1]× ·· ·× [1,Mh]

and ı j = τ([1,M j]) for j = 1, . . . ,h.

Remark 1. In the definition above, we have xı1,...,ıh ∈ dom(σ) = fv(RGT), so that σ ′ is
well defined. Indeed, since x1,...,1︸︷︷︸

h

∈ domI(σ), x−,...,−︸ ︷︷ ︸
h

∈ dom(σ), so xi1,...,ih ∈ fv(RG) for

some i1, . . . , ih. If i j is free in RG, then Γ ` i j : [1,M j], so iTj = τ([1,M j]) = ı j, since τ is
consistent with T for Γ ` RG. If i j is bound in RG, then i j is bound by list(i j ≤M j, pG)
or by

∧
...,i j≤M j ,...

att(pG), so in RGT , i j takes all values in 1, . . . ,MT
j , hence i j takes in

particular the value τ([1,M j]) = ı j. Therefore, xı1,...,ıh ∈ fv(RGT).

Remark 2. For a given T , there does not always exist a τ consistent with T for Γ ` RG.
Indeed, if T maps two free indices of RG of the same type to distinct values, there exists
no τ consistent with T for Γ ` RG.

Lemma 1. Let pG be a linear pattern, well typed in Γ, such that its free indices have
pairwise distinct types, its bound indices have pairwise distinct bounds, and bounds
distinct from the bounds of free indices. Let T be an environment for pG. Let σ be a
closed substitution such that dom(σ) = fv(pGT). Then, for all p ∈ I(σ pGT), there exist
τ , consistent with T for Γ ` pG, and σ ′ ∈ IΓ,τ(σ) such that σ ′pG1 = p.

Proof. By induction on the pattern pG.

• pG = xi1,...,ih : in this case, T = T ′[i1 7→ ı1, . . . , ih 7→ ıh]. As pG is well typed
and the only possibility for typing Γ ` xi1,...,ih is applying the type rule (Var), for
each j = 1, . . . ,h we have Γ ` i j : [1,N j] for some N j. We can then define τ by
τ([1,N j]) = ı j, since the types of the free indices i1, . . . , ih are pairwise distinct.
Therefore, we have that

IΓ,τ(σ) = ∪p′∈I(σxı1 ,...,ıh)
{{x1,...,1︸︷︷︸

h

7→ p′}}= {{x1,...,1︸︷︷︸
h

7→ p′} | p′ ∈ I(σ pGT)}.

17

Hence, for all p∈ I(σ pGT), there exists σ ′ ∈ IΓ,τ(σ) such that σ ′pG1 =σ ′x1,...,1︸︷︷︸
h

=

p.

• pG = f (pG
1 , . . . , pG

h): in this case

σ pGT = σ(f (pG
1 , . . . , pG

h))
T = f (σ pGT

1 , . . . ,σ pGT
h).

As pG is well typed in Γ and the only possibility for typing Γ ` f (pG
1 , . . . , pG

h)
is applying the type rule (Fun), we have Γ ` pG

1 , . . . ,Γ ` pG
h . Now, for all p ∈

I(σ pGT) = I(f (σ pGT
1 , . . . ,σ pGT

h)), there exist p j ∈ I(σ pGT
j) for j = 1, . . . ,h,

such that p = f (p1, . . . , ph). By induction, for all p j ∈ I(σ pGT
j), there exist τ j

consistent with T for Γ ` pG
j and σ ′j ∈ IΓ,τ j(σ|fv(pGT

j)) such that σ ′j p
G1
j = p j. We

can define τ = ∪ jτ j: in fact, τ1, . . . ,τh have the same value over types of free
indices (because they are consistent with the same T) and are disjoint over types
of bound indices (because the bound indices have pairwise distinct bounds, and
distinct from the bounds of free indices). Since pG is linear, σ ′1, . . . ,σ

′
h have

disjoint domain, so we can define σ ′ = ∪ jσ
′
j. Hence, τ is consistent with T for

Γ ` pG, σ ′ ∈ IΓ,τ(σ), and σ ′pG1 = σ ′(f (pG
1 , . . . , pG

h))
1 = f (p1, . . . , ph) = p.

• pG = ai[pG
1 , . . . , pG

h]. Similar to the previous case.

• pG = list(i≤M, p′G): in this case

σ pGT = σ(list(i≤M, p′G))T = σ〈p′GT[i7→1], . . . , p′GT[i7→MT]〉

= 〈σ p′GT[i7→1], . . . ,σ p′GT[i7→MT]〉.

For all p ∈ I(σ pGT) = I(〈σ p′GT[i7→1], . . . ,σ p′GT[i7→MT]〉), there exist k ∈ {1, . . . ,
MT} and pk ∈ I(σ p′GT[i7→k]) such that p = 〈pk〉. As pG is well typed in Γ and the
only possibility for typing Γ ` list(i≤M, p′G) is applying the type rule (List), we
have Γ, i : [1,M] ` p′G. Hence, by induction, for each pk ∈ I(σ p′GT[i7→k]), there
exist τk consistent with T ′= T[i 7→ k] for Γ′=Γ, i : [1,M]` p′G and σ ′k ∈ IΓ′,τk(σ)

such that σ ′k p′G1 = pk.

We show that τk is consistent with T for Γ ` pG. Notice that τk is defined on
Types(Γ′ ` p′G) and that this is equal to Types(Γ ` pG). As τk is consistent with
T ′ for Γ′ ` p′G, for each type [1,N]∈ Types(Γ′ ` p′G) = Types(Γ ` pG), we have:

– 1≤ τk([1,N])≤ NT ′ = NT .

– jT ′ = τk([1,N]) if j is a free index of p′G and Γ ` j : [1,N]. As T ′ = T[i 7→ k]
and the free indices of p′G are the free indices of pG plus i, we have that
jT = τk([1,N]) if j is a free index of pG and Γ ` j : [1,N].

Notice that IΓ,τ(σ) = IΓ′,τk(σ), as the variables typed in Γ and Γ′ have the same
type in both the type environments.

Hence we can choose τ = τk and σ ′=σ ′k so that τ is consistent with T for Γ` pG,
σ ′ ∈ IΓ,τ(σ), and σ ′pG1 = σ ′klist(i≤M, p′G)1 = 〈pk〉= p.

18

Corollary 1. Let FG = att(pG) be a linear fact, well typed in Γ, such that its free
indices have pairwise distinct types, its bound indices have pairwise distinct bounds,
and bounds distinct from the bounds of free indices. Let T be an environment for FG.
Let σ be a closed substitution such that dom(σ) = fv(FGT). Then, for all F ∈ I(σFGT),
there exist τ , consistent with T for Γ ` FG, and σ ′ ∈ IΓ,τ(σ) such that σ ′FG1 = F.

Proof. Obvious by applying Lemma 1 to pG.

Lemma 2. Let pG = f (pG
1 , . . . , pG

h) be a pattern well typed in Γ. Let σ be a closed
substitution such that dom(σ) = fv(pGT). For all τ consistent with T for Γ ` pG, for
all σ ′ ∈ IΓ,τ(σ), for each j = 1, . . . ,h, the following holds:

σ
′
|fv(pG1

j)
∈ IΓ,τ j(σ|fv(pGT

j)),

where τ j is the restriction of τ to Types(Γ ` pG
j).

Proof. Let σ ′j = σ ′|fv(pG1
j)

and σ j = σ|fv(pGT
j).

First, we have dom(σ ′j) = domI(σ j). As σ ′j is the restriction of σ ′ ∈ IΓ,τ(σ), by
definition of IΓ,τ(σ), for each x1,...,1︸︷︷︸

l

∈ dom(σ ′j), σ ′jx1,...,1︸︷︷︸
l

∈ I(σxı1,...,ıl), where Γ ` x :

[1,M1]×·· ·× [1,Ml] and ık = τ([1,Mk]) for all k = 1, . . . , l. As in Remark 1, xı1,...,ıl ∈
fv(pGT

j)= dom(σ j), so σ jxı1,...,ıl =σxı1,...,ıl . Moreover, τ j([1,Mk])= τ([1,Mk]). Hence,
for each x1,...,1︸︷︷︸

l

∈ dom(σ ′j), σ ′jx1,...,1︸︷︷︸
l

∈ I(σ jxı1,...,ıl), where Γ ` x : [1,M1]×·· ·× [1,Ml]

and ık = τ j([1,Mk]) for all k = 1, . . . , l. Hence, by definition of IΓ,τ j(σ j), we have
σ ′j ∈ IΓ,τ j(σ j).

Lemma 3. Let pG be a pattern, well typed in Γ. Let T be an environment for pG and
σ be a closed substitution such that dom(σ) = fv(pGT). Then, for all τ consistent with
T for Γ ` pG, for all σ ′ ∈ IΓ,τ(σ), we have σ ′pG1 ∈ I(σ pGT).

Proof. By induction on the pattern pG.

• pG = xi1,...,ih : in this case, T = T ′[i1 7→ ı1, . . . , ih 7→ ıh]. As pG is well typed the
only possibility for typing Γ ` xi1,...,ih is applying the type rule (Var), for each
j = 1, . . . ,h we have Γ ` i j : [1,M j] for some M j. For each τ consistent with
T for Γ ` pG, for each j = 1, . . . ,h, we have τ([1,M j]) = ı j. Hence, for each
σ ′ ∈ IΓ,τ(σ), we have σ ′pG1 = σ ′x1,...,1︸︷︷︸

h

∈ I(σxı1,...,ıh) = I(σ pGT).

• pG = f (pG
1 , . . . , pG

h): in this case

σ pGT = σ(f (pG
1 , . . . , pG

h))
T = f (σ pGT

1 , . . . ,σ pGT
h).

As pG is well typed in Γ and the only possibility for typing Γ `
f (pG

1 , . . . , pG
h) is applying the type rule (Fun), we have Γ ` pG

1 , . . . ,Γ `
pG

h . For all τ consistent with T for Γ ` pG, for all σ ′ ∈ IΓ,τ(σ), for

19

each j = 1, . . . ,h, by Lemma 2, we have that σ ′|fv(pG1
j)
∈ IΓ,τ j(σ|fv(pGT

j)),

where τ j = τ|Types(Γ`pG
j)

. By induction, for each j = 1, . . . ,h, since

τ j is consistent with T for Γ ` pG
j , and σ ′|fv(pG1

j)
∈ IΓ,τ j(σ|fv(pGT

j)), we

have σ ′|fv(pG1
j)

pG1
j ∈ I(σ|fv(pGT

j)pGT
j). Therefore, σ ′pG1 = f (σ ′|fv(pG1

1)
pGT

1 , . . . ,

σ ′|fv(pG1
h)

pGT
h) ∈ I(f (σ|fv(pGT

1)pGT
1 , . . . ,σ|fv(pGT

h)pGT
h)) = I(σ pGT).

• pG = ai[pG
1 , . . . , pG

h]. Similar to the previous case.

• pG = list(i≤M, p′G): in this case

σ pGT = 〈σ p′GT[i 7→1], . . . ,σ p′GT[i 7→MT]〉.

As pG is well typed in Γ and the only possibility for typing Γ ` list(i≤M, p′G) is
applying the type rule (List), we have Γ, i : [1,M] ` p′G. Let τ be consistent with
T for Γ` pG: we have τ([1,M]) = ı, for some ı∈ {1, . . . ,MT}, and τ is consistent
with T ′ = T[i 7→ ı] for Γ, i : [1,M] ` p′G. Hence, for each σ ′ ∈ IΓ,τ(σ), we have
σ ′ ∈ IΓ,τ(σ|fv(p′GT′)). Therefore, by induction, we have σ ′p′G1 ∈ I(σ p′GT ′), from

which follows that σ ′pG1 = 〈σ ′p′G1〉 ∈ I(σ pGT).

Corollary 2. Let FG =
∧

i1≤M1,...,ih≤Mh
att(pG) be a fact, well typed in Γ. Let T be an

environment for FG and σ be a closed substitution such that dom(σ) = fv(FGT). Then,
for all τ consistent with T for Γ ` FG, for all σ ′ ∈ IΓ,τ(σ), we have σ ′FG1 ∈ I(σFGT).

Proof. The proof proceeds similarly to the case list of Lemma 3, by applying Lemma 3
to pG.

Proof of Theorem 1. Suppose that F is derivable from RGT , and consider a derivation
of F from RGT . Let F ∈ I(F). We prove, by induction on the derivation of F, that F
is derivable from RG1.

F

RGT

(a)

F

RG1

(b)

Figure 6: Base case of the proof

Base step: Let the derivation of F be as in Fig. 6(a). By definition of a derivation,
we have that RGT = HGT ⇒CGT w F, which means that there exists a substitution σ

such that:

20

• σHGT ⊆ /0: this means that HGT = /0; then RG =CG.

• σCGT = F. By hypothesis, there exists Γ such that Γ ` RG, which means that
Γ `CG too. Hence, by Corollary 1, for all F ∈ I(F), there exist τ consistent with
T for Γ `CG and σ ′ ∈ IΓ,τ(σ) such that σ ′CG1 = F .

Hence F can be derived from CG1, so F is derivable from RG1, by the derivation of
Fig. 6(b).

Inductive step: Let the derivation of F be as in Fig. 7.

RGT

...F∗i

. . .

F1 Fm

F

...

Figure 7: Derivation of F from RGT

By definition of a derivation, we have that RGT w F1∧·· ·∧Fm⇒ F, which means
that there exists a substitution σ such that σCGT = F and σHGT ⊆ F1∧ ·· ·∧Fm, and
F1, . . . ,Fm are derivable from RGT by subtrees of the derivation of F.

By hypothesis, we have that Γ ` RG, so Γ `CG. Let σC = σ|fv(CGT): we have that
σCCGT = F, Γ ` CG and hypotheses 1 and 2, so by Corollary 1, for each F ∈ I(F),
there exist τC consistent with T for Γ `CG and σ ′C ∈ IΓ,τC(σC) such that σ ′CCG1 = F .

Now, we build a τ that extends τC to Types(Γ ` RG) and a σ ′ ∈ IΓ,τ(σ) that extends
σ ′C. For each type [1,M] ∈ Types(Γ ` RG):

• if [1,M] ∈ Types(Γ `CG), then we define τ([1,M]) = τC[1,M]

• if [1,M] 6∈ Types(Γ `CG) and there exists an index i free in RG such that Γ ` i :
[1,M], then we define τ([1,M]) = iT . (This is possible since the free indices of
RG have pairwise distinct types by hypothesis 1.)

21

• otherwise, we choose any value such that 1≤ τ([1,M])≤MT .

Clearly, as τC is consistent with T for Γ `CG, also τ is consistent with T for Γ ` RG.
For each x1,...,1︸︷︷︸

h

∈ domI(σ):

• if x1,...,1︸︷︷︸
h

∈ dom(σ ′C), then we define σ ′x1,...,1︸︷︷︸
h

= σ ′Cx1,...,1︸︷︷︸
h

.

In this case, as σ ′C ∈ IΓ,τC(σC), we have that σ ′x1,...,1︸︷︷︸
h

=σ ′Cx1,...,1︸︷︷︸
h

∈ I(σCxı1,...,ıh)=

I(σxı1,...,ıh), where Γ` x : [1,M1]×·· ·× [1,Mh] and ı j = τC([1,M j]) = τ([1,M j])
for all j = 1, . . . ,h.

• otherwise, we define σ ′x1,...,1︸︷︷︸
h

∈ I(σxı1,...,ıh) where Γ ` x : [1,M1]×·· ·× [1,Mh]

and ı j = τ([1,M j]) for each j = 1, . . . ,h.

Clearly, σ ′ ∈ IΓ,τ(σ).
Now let HG = FG

1 ∧ ·· ·∧FG
k . For each i = 1, . . . ,k, let τi = τ|Types(Γ`FG

i) and σ ′i =

σ ′|fv(FG1
i)
∈ IΓ,τi(σfv(FGT

i)) by a reasoning similar to Lemma 2. By Corollary 2, we have

that σ ′i FG1
i ∈ I(σFGT

i). Let Fi = σ ′i FG1
i = σ ′FG1

i . Therefore, we have σ ′CG1 = F and
σ ′HG1 ⊆ F1∧·· ·∧Fk, so RG1 w F1∧·· ·∧Fk⇒ F .

We have Fi ∈ I(σFGT
i). Since σFGT

i ⊆ σHGT ⊆ F1∧·· ·∧Fm, we have Fi ∈ I(F∗i)
for some F∗i ∈ {F1, . . . ,Fm}. So for each i = 1, . . . ,k, F∗i is derivable from RGT by
subtrees of the initial derivation of F, hence by induction hypothesis, Fi is derivable
from RG1. Therefore, F is derivable from RG1 by the derivation of Fig. 8.

4.3 Examples
To illustrate why the hypotheses of the theorem are necessary, we provide examples for
which the theorem does not hold because some hypotheses are not satisfied. Consider
the following protocol:

(1) A→ B : {(a,a)}k
(2) B→ A : ({(b,b)}k,{s} f (a,b))
(3) A→C : 〈{(a1,a′1)}k, . . . ,{(aN ,a′N)}k〉
(4) C→ A : 〈〈 f (a1,a′1), . . . , f (a1,a′N)〉, . . . ,〈 f (aN ,a′1), . . . , f (aN ,a′N)〉〉

At the beginning, the participants A, B, C share a key k. A first sends to B a fresh nonce
a paired with itself and encrypted under k. When B receives it, he creates a fresh nonce
b, computes the hash f (a,b) and sends the pair ({(b,b)}k,{s} f (a,b)), where s is some
secret. A can then decrypt {(b,b)}k, obtain b, compute f (a,b), decrypt {s} f (a,b), and
obtain s, but an adversary should be unable to compute s. In the second part of the
protocol (Messages 3 and 4), A sends to C a list of N fresh pairs (ai,a′i) encrypted with
k and C replies with the matrix of the hashes f (ai,a′j).

22

F

RG1

Fj

FkF1

...
...

. . .

Figure 8: Derivation of F from RG1

Now, if an attacker sends 〈{(a,a)}k,{(b,b)}k〉 to C as Message 3, he obtains f (a,b)
by decomposition of the list 〈〈 f (a,a), f (a,b)〉,〈 f (b,a), f (b,b)〉〉 and can now decrypt
{s} f (a,b) and obtain the secret s.

However, if we consider only lists of one element, there is no attack: the last mes-
sage consists of 〈〈 f (a,a′)〉〉 if Message 3 was {(a,a′)}k, so the adversary would need
to have {(a,b)}k in order to obtain f (a,b).

The generalized Horn clause for Message 4 is:

att(list(i′ ≤ N,senc((xi′ ,yi′),k)))⇒ att(list(i≤ N, list(j ≤ N, f (x j,yi))))

In this clause, the Hypothesis 2 of Theorem 1 is not satisfied, because the bound indices
i and j have the same bound N. If we translate this clause for lists of one element, we
obtain

att(〈senc((x1,y1),k)〉)⇒ att(〈〈 f (x1,y1)〉〉)

and with this clause (and other clauses representing this protocol), att(s) is not derivable
because att(f (a,b)) is not derivable, while with lists of length two, as we previously
showed, there is an attack: att(s) is derivable. This example confirms that bound indices
in the conclusion must have pairwise distinct bounds.

Similarly, we can define a group protocol between a participant B, a leader L, and

23

N group members Ai:

(1) L→ B : {(a,a)}p
(2) B→ L : ({(b,b)}p,{s} f (a,b))
(3) L→ Ai : 〈{(a1,a′1)}p, . . . ,{(aN ,a′N)}p〉
(4) Ai→ L : 〈 f (a1,a′i), . . . , f (aN ,a′i)〉

In this case, the generalized Horn clause for Message 4 is:

att(list(i′ ≤ N,senc((xi′ ,yi′), p)))⇒ att(list(j ≤ N, f (x j,yi)))

where again the Hypothesis 2 of Theorem 1 is not satisfied: the bound index j has the
same bound N as the free index i, because they index the same variable x . As above,
att(s) is derivable from the clauses for lists of length 2 but not for lists of length one.
There are similar examples regarding Hypothesis 1, for instance with the clause

att(list(i′ ≤ N,senc((xi′ ,yi′), p)))⇒ att(f (x j,yi))

in which the free indices i and j have the same type [1,N], but it is more difficult to
find a concrete protocol that would generate such a clause. (Typically, the protocol
participants are indexed by a single index i, so clauses often have a single free index.)

Next, we consider a different kind of example: for the following protocol, the set of
Horn clauses satisfies the hypothesis of Theorem 1, so we can apply the theorem. How-
ever, the protocol preserves secrecy for lists of length one but not for lists of unbounded
length. This illustrates that the approximations made in the translation to Horn clauses
are key for our theorem to hold: att(s) is derivable from the clauses, even for lists of
length one. Let A and B be the two participants of the protocol that share a key k. Let
h be a hash function.

(1) A→ B : {e}k,(b1,b2),{s}h(h(b1,e),h(b2,e))
(2) B→ A : 〈x1, . . . ,xM〉
(3) A→ B : 〈h(x1,e), . . . ,h(xM,e)〉

A chooses a fresh key e and two random nonces b1,b2, and sends to B the message {e}k,
(b1,b2),{s}h(h(b1,e),h(b2,e)) where s is a secret. B obtains e by decryption, computes the
key h(h(b1,e),h(b2,e)), and obtains s by decrypting with this key. Later, B sends a
list 〈x1, . . . ,xM〉 and A returns the list containing for each component its hash with
e. Clearly, if we consider this protocol for lists of length M ≥ 2, there is an attack:
the attacker can send to A the list 〈b1,b2, . . .〉 and he obtains at Message 3 the list
〈h(b1,e),h(b2,e),h(. . . ,e)〉. He can then compute the hash h(h(b1,e),h(b2,e)) and
decrypt {s}h(h(b1,e),h(b2,e)) to obtain the secret s. However, if we translate this protocol
to lists of length one, we do not find the attack: the attacker can only ask for 〈h(b1,e)〉
or 〈h(b2,e)〉, but cannot obtain both. For this point to hold, it is important that the
participants do not repeat the Messages 2-3 more than once for each session.

ProVerif finds an attack against this protocol (which is a false attack for lists of
length one): the abstraction done with the representation by Horn clauses in fact allows
the participants to repeat their messages more than once. The translation of the protocol

24

into clauses for lists of length one contains:

A sends the first message:
att((senc(e,k),(b1,b2),senc(s,h(h(b1,e),h(b2,e))))) (9)

A receives message 2 and sends message 3:
att(〈x〉)⇒ att(〈h(x,e)〉) (10)

plus clauses for tuples, encryption, and the hash function h, where 〈·〉 is a unary func-
tion such that att(〈x〉)⇒ att(x) and att(x)⇒ att(〈x〉). Now, if we query for the secrecy
of s, ProVerif will find the attack: att(s) is derivable from these clauses. Indeed, we get
b1 and b2 from (9), then obtain h(b1,e) and h(b2,e) by two applications of (10) (note
that we apply this clause twice for the same e, while the corresponding action can in
fact be applied only once in the protocol itself), then compute h(h(b1,e),h(b2,e)), and
finally obtain s by decrypting senc(s,h(h(b1,e),h(b2,e))).

5 An Approximation Algorithm
In Sect. 3.4, we gave the representation of the Asokan-Ginzboorg protocol with gen-
eralized Horn clauses. However, some of them do not satisfy the hypotheses of The-
orem 1. For example, the clause (6) does not have a linear conclusion and the same
bound appears twice in the conclusion.

5.1 Approximation Algorithm
Here we give an algorithm for transforming generalized Horn clauses into clauses that
satisfy the hypothesis of Theorem 1. We suppose that the initial set of clauses RG

satisfies:

Hypothesis 1. For each clause RG ∈ RG, RG is well-typed, that is, there exists Γ

such that Γ ` RG, and each variable has indices of pairwise distinct types, that is, if
Γ ` x : [1,N1]× . . . ,×[1,Nh], then N1, . . . ,Nh are pairwise distinct.

This hypothesis on the initial clauses is often satisfied in practice. In particular,
it is satisfied by our running example, and it should generally be satisfied by group
protocols. Indeed, the variables typically have only one index (the number of the group
member).

Given a clause RG well typed in Γ, the approximation algorithm performs the fol-
lowing three steps, until it reaches a fixpoint:

1. Suppose RG = HG⇒ att(pG), where HG contains a free index i such that Γ ` i :
[1,N] and pG contains a bound index j with bound N, or RG contains two free
indices i, j such that Γ ` i : [1,N] and Γ ` j : [1,N].

The algorithm chooses a fresh variable y = ρx for each variable x that occurs
in RG with index i, and replaces all occurrences of variables x that have index i
with ρx (the indices remain the same).

25

The obtained clause can then be typed in an environment Γ′ equal to Γ except
that Γ′ ` i : [1,M] for some fresh bound M and that Γ′ ` y : [1,M1]×·· ·× [1,Mh]
if y = ρx , Γ ` x : [1,N1]×·· ·× [1,Nh], and for each k = 1, . . . ,h, Mk = Nk if
Nk 6= N and Mk = M if Nk = N. The indices i and j then have different types in
the obtained clause.

2. Suppose RG = HG
1 ∧HG

2 ⇒ att(pG), where pG contains a pattern list(i≤ N, pG
1)

as well as a pattern list(j ≤ N, pG
2) or a free index j such that Γ ` j : [1,N], HG

1
contains all hypotheses of RG in which the bound N appears or a free index of
type [1,N] appears, and HG

2 contains the other hypotheses of RG.

The algorithm chooses a fresh bound M and replaces RG with

HG
1 ∧H ′G1 ∧HG

2 ⇒ att(p′G)

where:

• ρ is a substitution that replaces each variable x of HG
1 and pG

1 such that
Γ ` x : [1,N1]× ·· · × [1,Nh] and Nk = N for some k ∈ {1, . . . ,h} with a
fresh variable y (the indices remain the same); the obtained clause will be
typed in an environment Γ′ obtained from Γ by adding Γ′ ` y : [1,M1]×
·· ·× [1,Mh] where, for each k = 1, . . . ,h, Mk = Nk if Nk 6= N and Mk = M
if Nk = N;

• H ′G1 is obtained from ρHG
1 by replacing the bound N with M;

• p′G is obtained from pG by replacing list(i ≤ N, pG
1) with list(i ≤M, p′G1),

where p′G1 is pG
1 in which all occurrences of variables x that have index i

have been replaced with ρx .

3. Suppose RG = HG
1 ∧HG

2 ⇒ att(pG) where pG contains at least two occurrences
of a variable x , HG

1 contains all hypotheses of RG in which x appears, and HG
2

contains the other hypotheses of RG.

The algorithm chooses a fresh variable y and replaces RG with

HG
1 ∧H ′G1 ∧HG

2 ⇒ att(p′G)

where H ′G1 is obtained from HG
1 by replacing each occurence of x with y (the in-

dices remain the same), and p′G is obtained from pG by replacing one occurrence
of x with y .

Step 1 is applied first, until it cannot be applied. Then step 2 is applied, until there
are no list constructors that match the condition. Step 2 may already rename some
variables that occur more than once in the conclusion of the clause. Then, when a
fixpoint is reached with step 2, we start applying step 3, until no variable occurs more
than once in the conclusion. Step 1 ensures that free indices have pairwise distinct
types and that free indices of the hypothesis have types distinct from those of bound
indices in the conclusion. Step 2 ensures that the bound indices in the conclusion have
pairwise distinct bounds and bounds distinct from the bounds of free indices in the
conclusion. Step 3 ensures that the conclusion is linear.

26

This algorithm is similar to the algorithm that transforms any Horn clauses into
Horn clauses of the class H1 [10]. Both algorithms ensure the linearity of the conclu-
sion in the same way (step 3). Step 2 uses an idea similar to step 3 to guarantee that the
types of the indices are distinct.

We illustrate this algorithm on a couple of examples in Sect. 5.2. The next theorem
shows its correctness.

Theorem 2. Let RG be a set of clauses that satisfies Hypothesis 1. The approximation
algorithm terminates on RG and the final set of clauses R ′G satisfies the hypothesis
of Theorem 1. Moreover, for any fact F, if F is derivable from RGT , then F is also
derivable from R ′GT .

Proof. First, if a generalized Horn clause RG is well typed in Γ, then there exists Γ′

such that the clause R′G obtained by the approximation algorithm is well typed in Γ′.
Let us construct such a Γ′.

• If RG is transformed by step 1, then Γ′ is equal to Γ except that the type of i is
replaced with i : [1,M], and for each variable x that occurs in RG with index i
such that Γ ` x : [1,N1]×·· ·× [1,Nh] and y = ρx , we add y : [1,M1]×·· ·×
[1,Mh] to Γ′, where for each k = 1, . . . ,h, Mk = Nk if Nk 6= N and Mk = M if
Nk = N.

We show that Γ′ ` R′G by induction on the derivation of Γ ` RG. In particular, we
show that, if p′G is obtained from pG by replacing occurrences of variables x that
have index i with ρx , Γ1 ` pG, and Γ′1 is constructed from Γ1 as Γ′ from Γ above,
then Γ′1 ` p′G. The only interesting case is the one of variables with index i:
Γ1 ` xi1,...,ih has been obtained by type rule (Var) so Γ1 ` x : [1,N1]×·· ·× [1,Nh],
Γ1 ` ik : [1,Nk] for all k ∈ {1, . . . ,h}, il = i, and Nl = N for some l ∈ {1, . . . ,h}.
We have Nk 6= N for all k 6= l by Hypothesis 1. Hence, Γ′1 ` y : [1,M1]×·· ·×
[1,Mh] where for each k = 1, . . . ,h, Mk = Nk if Nk 6= N and Mk = M if Nk = N,
Γ′1 ` ik : [1,Mk] for all k ∈ {1, . . . ,h}, so Γ′1 ` yi1,...,ih by type rule (Var).

• If RG is transformed by step 2, then Γ′ = Γ,Γ′′, where Γ′′ is defined as follows.
For each variable x ∈ fv(HG

1)∪ fv(pG
1) such that Γ` x : [1,N1]×·· ·× [1,Nh] with

Nk = N for some k ∈ {1, . . . ,h} and ρx = y , we add y : [1,M1]×·· ·× [1,Mh]
to Γ′′, where for each k = 1, . . . ,h, Mk = Nk if Nk 6= N and Mk = M if Nk = N.

Again, we show that Γ′ ` R′G by induction on the derivation of Γ ` RG.

• If RG is transformed by step 3, then Γ′ = Γ,y : [1,N1]× ·· · × [1,Nh], where
Γ ` x : [1,N1]×·· ·× [1,Nh].

Again, we show that Γ′ ` R′G by induction on the derivation of Γ ` RG.

Let us show that the algorithm terminates. With step 1, we strictly decrease the
number of pairs of indices (i, j) such that i is free in the hypothesis, Γ ` i : [1,N],
and j is bound in the conclusion with bound N, or i and j are both free in RG with
Γ ` i : [1,N] and Γ ` j : [1,N], so step 1 terminates. Next, with step 2, we strictly
decrease the number of pairs of indices (i, j) such that the conclusion of the clause
contains both a pattern list(i ≤ N, pG

1) and a pattern list(j ≤ N, pG
2) or a free index j

27

such that Γ ` j : [1,N] with bound N, so step 2 terminates. Finally, with step 3, we
strictly decrease the number of occurrences of variables that occur more than once in
the conclusion, so step 3 terminates. Moreover, since steps 2 and 3 do not create new
indices of an already existing type, they do not create new opportunities of applying
step 1. Since step 3 does not modify the indices of the variables, it does not create
any list constructor that satisfies the condition for applying step 2. Hence, when step 3
terminates, the algorithm terminates.

The final set of clauses R ′G satisfies the hypothesis of Theorem 1: for each clause
R′G ∈R ′G, R′G is well typed in some Γ′ by the first point shown above, the free indices
of R′G have pairwise distinct types in Γ′ (otherwise, we could apply step 1), the con-
clusion of each clause R′G is linear (otherwise, we could apply step 3) and the bound
indices in the conclusion have pairwise distinct bounds, and bounds different from the
bounds of free indices in the judgment Γ′ ` R′G (otherwise, we could apply step 1 or
step 2).

Finally, let us show that, if a fact F is derivable from RGT , then F is also derivable
from R ′GT . We show that, for each transformation step of RG into R′G, if a fact F
is derivable from F1, . . . ,Fl using RG = HG ⇒ CG, that is, there exist T and σ such
that σHGT ⊆ {F1, . . . ,Fl} (set inclusion) and σCGT = F , then F is also derivable from
F1, . . . ,Fl using R′G.

• If RG is transformed into R′G by step 1, we let T ′ = T[M 7→ NT] and σ ′ be the
extension of σ with σ ′yı1,...,ıh = σxı1,...,ıh for all ı1, . . . , ıh when ρx = y .

Then σ ′R′GT ′ = σRGT , so F is also derivable from F1, . . . ,Fl using R′G.

• If RG =HG
1 ∧HG

2 ⇒ att(pG) is transformed into R′G =HG
1 ∧H ′G1 ∧HG

2 ⇒ att(p′G)
by step 2, we let T ′ = T[M 7→ NT] and σ ′ be the extension of σ with σ ′yı1,...,ıh =

σxı1,...,ıh for all ı1, . . . , ıh when ρx = y . Then σ ′R′GT ′ = σRGT up to copies of
hypotheses, since σ ′H ′GT ′

1 = σHGT
1 and σ ′p′GT ′ = σ pGT . Therefore, F is also

derivable from F1, . . . ,Fl using R′G.

• If RG is transformed into R′G by step 3, we let T ′ = T and σ ′ be the extension of
σ with σ ′yı1,...,ıh = σxı1,...,ıh for all ı1, . . . , ıh. Then σ ′R′GT ′ = σRGT up to copies
of hypotheses, so F is also derivable from F1, . . . ,Fl using R′G.

5.2 Running example
We apply the approximation algorithm to our running example.

For instance, let us transform the clause (6):

att((L,senc(y, pw)))∧ att(senc((list(j ≤ N,z j),z′),ri[y]))

⇒ att((ai,senc((si[y],h((list(j ≤ N,z j),z′))), f ((list(j ≤ N,z j),z′)))))

First, as there are two list constructors with the same bound N in the conclusion, we
apply step 2 of the algorithm: we rename the bound and variables of one of the two

28

occurrences of list(j ≤ N,z j) in the conclusion, so we obtain:

att((L,senc(y, pw)))∧
att(senc((list(j ≤ N,z j),z′),ri[y]))∧ att(senc((list(j ≤M,x j),z′),ri[y]))

⇒ att((ai,senc((si[y],h((list(j ≤ N,z j),z′))), f ((list(j ≤M,x j),z′)))))

Next, as variable z′ appears twice in the conclusion, we apply step 3 and obtain:

att((L,senc(y, pw)))∧
att(senc((list(j ≤ N,z j),z′),ri[y]))∧ att(senc((list(j ≤M,x j),z′),ri[y]))∧
att(senc((list(j ≤ N,z j),x′),ri[y]))∧ att(senc((list(j ≤M,x j),x′),ri[y]))

⇒ att((ai,senc((si[y],h((list(j ≤ N,z j),z′))), f ((list(j ≤M,x j),x′)))))

(11)

Finally, this clause satisfies the hypothesis of Theorem 1. All clauses RG listed in
Sect. 3.4, which represent our running example, are transformed in a similar way,
yielding clauses R ′G. The clause (4) is transformed by giving distinct names to the
three occurrences of y in the conclusion by step 3, yielding the clause:

att((L,senc(y, pw)))∧ att((L,senc(x, pw)))∧ att((L,senc(z, pw)))

⇒ att((ai,senc((ri[y],si[x]),z)))

The clause (5) is transformed by applying step 2 twice so that the two lists and the free
index i of the conclusion have different bounds:∧

j≤N att((a j,senc((v j,w j),e)))∧∧
j≤M att((a j,senc((x j,y j),e)))∧∧
j≤M′ att((a j,senc((z j, t j),e)))

⇒ att(senc((list(j ≤M′, t j),s′[list(j ≤M,(x j,y j))]),vi))

As we want to prove the secrecy of the session key K, we need to transform also the
clause (8), by applying step 2 so that the two lists of the conclusion have different
bounds: ∧

j≤N att((a j,senc((v j,w j),e)))∧
att((ai,senc((wi,h((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))]))),

f ((list(j ≤ N,w j),s′[list(j ≤ N,(v j,w j))])))))∧∧
j≤M att((a j,senc((x j,y j),e)))∧

att((ai,senc((yi,h((list(j ≤M,y j),s′[list(j ≤M,(x j,y j))]))),

f ((list(j ≤M,y j),s′[list(j ≤M,(x j,y j))])))))

⇒ att(senc(s′′L, f ((list(j ≤ N,w j),s′[list(j ≤M,(x j,y j))]))))

The other clauses are left unchanged since they already satisfy the hypothesis of The-
orem 1.

29

We can now translate these clauses into Horn clauses with lists of length one, ob-
taining the set R ′G1. For example, clause (11) can be translated into:

att((L,senc(y, pw)))∧
att(senc((〈z1〉,z′),r1[y]))∧ att(senc((〈x1〉,z′),r1[y]))∧
att(senc((〈z1〉),x′),r1[y]))∧ att(senc((〈x1〉,x′),r1[y]))

⇒ att((a1,senc((s1[y],h((〈z1〉,z′))), f ((〈x1〉,x′)))))

The other clauses are translated in a similar way. We have then shown that att(s′′a) and
att(s′′L) are not derivable from R ′G1, using ProVerif with the input file given at http:
//www.di.ens.fr/~paiola/publications/PaiolaBlanchetPOST12.html. By
Theorem 1, we conclude that att(s′′a) (resp. att(s′′L)) is not derivable from R ′GT , so by
Theorem 2,att(s′′a) (resp. att(s′′L)) is not derivable from RGT . Therefore, the Asokan-
Ginzboorg protocol preserves the secrecy of s′′a (resp. s′′L), that is, it preserves the
secrecy of the key K that ai has (resp. that the leader L has).

5.3 Another example
We have also considered a basic XML encryption [9] protocol. It is a very simple
protocol between two principals A and B that share an encryption key k and a MAC
key k′. In order to encrypt a list 〈a1, . . . ,aM〉 using the encrypt-then-MAC scheme, one
encrypts each component of the list, and computes a MAC of the list of ciphertexts:

A→ B : (〈{a1}k, . . . ,{aM}k〉,mac(k′,〈sha1({a1}k), . . . ,sha1({aM}k)〉)).

The representation of this protocol with generalized Horn clauses consists of the
following fact:

att((list(i≤M,senc(ai,k)),mac(k′, list(j ≤M,sha1(senc(a j,k)))))).

As this clause does not satisfy the hypothesis of Theorem 1, we apply the approxi-
mation algorithm and obtain:

att((list(i≤M,senc(ai,k)),mac(k′, list(j ≤ N,sha1(senc(a j,k)))))).

We can now translate it into the corresponding Horn clause with lists of length one:

att((〈senc(a1,k)〉,mac(k′,〈sha1(senc(a1,k))〉))).

We have used ProVerif to show that att(a1) is not derivable from the set of Horn
clauses for the protocol and for the abilities of the attacker with lists of length one.
Therefore by Theorem 1, this protocol preserves the secrecy of each a j, for j = 1, . . . ,M
for lists of any length.

6 Conclusions and Future Work
We have proposed a new type of clauses, generalized Horn clauses, useful to represent
protocols that manipulate lists of unbounded length, as well as group protocols with an

30

unbounded number of participants. We have shown that, for a subclass of generalized
Horn clauses, if secrecy is proved by the Horn clause technique for lists of length one,
then we have secrecy for lists of any length. We have also provided an approximation
algorithm that transforms a set of generalized Horn clauses for satisfying the hypothesis
of our main theorem. Using these results, one can prove secrecy for lists of any length
for some group protocols, as we did for the Asokan-Ginzboorg protocol, and for simple
XML protocols.

The main limitations of our approach are that all elements of lists must be treated
uniformly and that we do not support cryptographic primitives such as Diffie-Hellman
key agreements that are modeled using equational theories. This is why we could
not apply our approach to more examples. We plan to overcome these limitations
in the future. Indeed, some group protocols (e.g. A.GDH-2) use the Diffie-Hellman
key agreement, which we cannot handle yet. We believe that it could be handled by
combining our result with [13]. By relaxing the condition on a uniform treatment of
lists, we plan to support more general data structures and protocols, including more
realistic XML protocols (web services). This will probably require a new extension
of Horn clauses and of the resolution algorithm, since these protocols may not fit in
a class for which secrecy for lists of any length can be proved from underivability for
lists of length one. In particular, as we mentioned in Sect. 3.4, our technique does not
support equality tests on certain components of lists, because in the representation of
unbounded lists, all elements need to have the same form. We plan to support such
tests in the future.

ProVerif supports a variant of the applied pi calculus for modeling protocols. How-
ever, our result models group protocols with generalized Horn clauses. We plan to
extend the input language of ProVerif to model group protocols, and to translate it
automatically to generalized Horn clauses.

Finally, we plan to consider other security properties, such as authentication, per-
haps using lists of length two instead of one.

Acknowledgments This work was partly supported by the ANR project ProSe (deci-
sion number ANR-2010-VERS-004-01). This work was partly done while the authors
were at École Normale Supérieure, Paris.

References
[1] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and

Logic Programs. Journal of the ACM, 52(1):102–146, 2005.

[2] N. Asokan and P. Ginzboorg. Key agreement in ad hoc networks. Computer
Communications, 23(17):1627–1637, 2000.

[3] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of
Automated Reasoning, volume 1, chapter 2, pages 19–100. North Holland, 2001.

[4] B. Blanchet. Using Horn clauses for analyzing security protocols. In V. Cortier
and S. Kremer, editors, Formal Models and Techniques for Analyzing Security

31

Protocols, volume 5 of Cryptology and Information Security Series, pages 86–
111. IOS Press, Amsterdam, 2011.

[5] J. Bryans and S. Schneider. CSP, PVS and recursive authentication protocol. In
DIMACS Workshop on Formal Verification of Security Protocols, 1997.

[6] N. Chridi, M. Turuani, and M. Rusinowitch. Constraints-based Verification of Pa-
rameterized Cryptographic Protocols. Research Report RR-6712, INRIA, 2008.

[7] N. Chridi, M. Turuani, and M. Rusinowitch. Decidable analysis for a class of
cryptographic group protocols with unbounded lists. In CSF’09, pages 277–289,
Los Alamitos, 2009. IEEE.

[8] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, IT-29(12):198–208, 1983.

[9] D. Eastlake and J. Reagle. XML encryption syntax and processing.
W3C Candidate Recommendation, 2002. http://www.w3.org/TR/2002/

CR-xmlenc-core-20020802/.

[10] J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire
comprendre à un assistant de preuve ? In JFLA’04, pages 1–20. INRIA, 2004.

[11] S. Kremer, A. Mercier, and R. Treinen. Proving group protocols secure against
eavesdroppers. In IJCAR ’08, volume 5195 of LNAI, pages 116–131, Heidelberg,
2008. Springer.

[12] R. Küsters and T. Truderung. On the automatic analysis of recursive security
protocols with XOR. In W. Thomas and P. Weil, editors, STACS’07, volume 4393
of LNCS, pages 646–657, Heidelberg, 2007. Springer.

[13] R. Küsters and T. Truderung. Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In CSF’09, pages 157–171, Los Alamitos, 2009. IEEE.

[14] C. Meadows. Extending formal cryptographic protocol analysis techniques for
group protocols and low-level cryptographic primitives. In WITS’00, 2000.

[15] C. Meadows and P. Narendran. A unification algorithm for the group Diffie-
Hellman protocol. In WITS’02, 2002.

[16] C. Meadows, P. Syverson, and I. Cervesato. Formal specification and analysis
of the Group Domain of Interpretation protocol using NPATRL and the NRL
protocol analyzer. Journal of Computer Security, 12(6):893–931, 2004.

[17] L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In
CSFW’97, pages 84–95, Los Alamitos, 1997. IEEE.

[18] O. Pereira and J.-J. Quisquater. Some attacks upon authenticated group key agree-
ment protocols. Journal of Computer Security, 11(4):555–580, 2003.

32

[19] O. Pereira and J.-J. Quisquater. Generic insecurity of cliques-type authenticated
group key agreement protocols. In CSFW’04, pages 16–19, Los Alamitos, 2004.
IEEE.

[20] G. Steel and A. Bundy. Attacking group protocols by refuting incorrect inductive
conjectures. Journal of Automated Reasoning, 36(1-2):149–176, 2006.

[21] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group key
agreement. In ICDCS’98, pages 380–387, Los Alamitos, 1998. IEEE.

[22] T. Truderung. Selecting theories and recursive protocols. In M. Abadi and
L. de Alfaro, editors, CONCUR’05, pages 217–232, Heidelberg, 2005. Springer.

33

