

A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol

Benjamin Lipp, Bruno Blanchet, Karthik Bhargavan (INRIA Paris, Prosecco) June 18, 2019

4th IEEE European Symposium on Security and Privacy

Introduction

Protocol

Contributions

Nodel DOOOOO Analysis 2000 Conclusion OO

The WireGuard Virtual Private Network (VPN)

Introduction		
•		

nalysis 0000 Conclusion 00

The WireGuard Virtual Private Network (VPN)

- uses modern cryptography
- no cryptographic agility (unlike e.g., TLS)

Contributions

Model 200000 Analysis 0000 Conclusion OO

The WireGuard Virtual Private Network (VPN)

- uses modern cryptography
- no cryptographic agility (unlike e.g., TLS)
- \cdot works directly over UDP
- \cdot only a few thousand lines of code

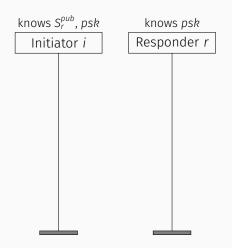
Contributions

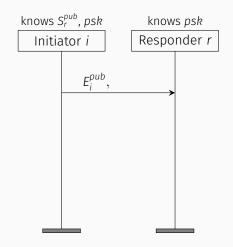
Model 000000 Analysis 0000 Conclusion 00

The WireGuard Virtual Private Network (VPN)

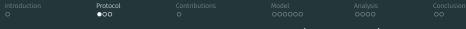
- uses modern cryptography
- no cryptographic agility (unlike e.g., TLS)
- works directly over UDP
- \cdot only a few thousand lines of code
- ongoing integration into the Linux kernel
- aims to replace OpenVPN and IPsec
- VPN providers are starting to adopt it

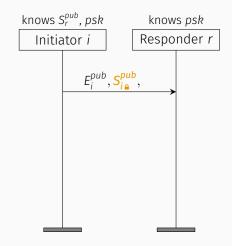
	Protocol ●OO				
WireGuard's	Main Proto	col: Noise IK	osk2 (simpli	fied)	



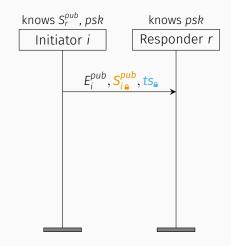


 $C_{1} \leftarrow hkdf_{1}(C_{0} = const_{C}, E_{i}^{pub})$ $C_{2} \| \mathbf{k}_{1} \leftarrow hkdf_{2}(C_{1}, dh(E_{i}^{priv}, S_{r}^{pub}))$ $H_{2} \leftarrow hash(hash(const_{H} \| S_{r}^{pub}) \| E_{i}^{pub})$

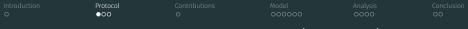


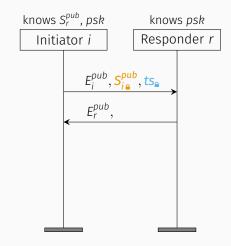


 $C_{1} \leftarrow \mathsf{hkdf}_{1}(C_{0} = \mathsf{const}_{C}, E_{i}^{pub})$ $C_{2} || \mathbf{k}_{1} \leftarrow \mathsf{hkdf}_{2}(C_{1}, \mathsf{dh}(E_{i}^{priv}, S_{r}^{pub}))$ $H_{2} \leftarrow \mathsf{hash}(\mathsf{hash}(\mathsf{const}_{H} || S_{r}^{pub}) || E_{i}^{pub})$ $S_{i \, a}^{pub} \leftarrow \mathsf{aenc}(\mathbf{k}_{1}, 0, S_{i}^{pub}, H_{2})$ $C_{3} || \mathbf{k}_{2} \leftarrow \mathsf{hkdf}_{2}(C_{2}, \mathsf{dh}(S_{i}^{priv}, S_{r}^{pub}))$

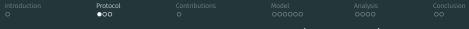


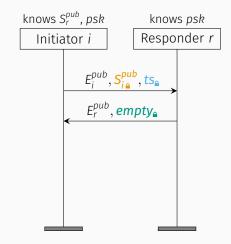
 $C_{1} \leftarrow hkdf_{1}(C_{0} = const_{C}, E_{i}^{pub})$ $C_{2}||\mathbf{k}_{1} \leftarrow hkdf_{2}(C_{1}, dh(E_{i}^{priv}, S_{r}^{pub}))$ $H_{2} \leftarrow hash(hash(const_{H}||S_{r}^{pub})||E_{i}^{pub})$ $S_{ie}^{pub} \leftarrow aenc(\mathbf{k}_{1}, 0, S_{i}^{pub}, H_{2})$ $C_{3}||\mathbf{k}_{2} \leftarrow hkdf_{2}(C_{2}, dh(S_{i}^{priv}, S_{r}^{pub}))$ $ts_{e} \leftarrow aenc(\mathbf{k}_{2}, 0, timestamp(), H_{3})$



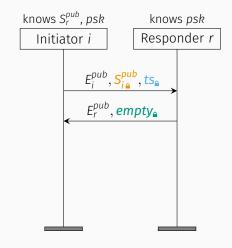


- $C_1 \leftarrow hkdf_1(C_0 = const_c, E_i^{pub})$ $C_2 \parallel \mathbf{k}_1 \leftarrow \text{hkdf}_2(C_1, \text{dh}(E_i^{priv}, S_r^{pub}))$ $H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$ $S_{i,0}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$ $C_3 || \mathbf{k}_2 \leftarrow \mathsf{hkdf}_2(C_2, \mathsf{dh}(S_i^{priv}, S_r^{pub}))$ $ts_{\square} \leftarrow aenc(k_2, 0, timestamp(), H_3)$ $C_4 \leftarrow \text{hkdf}_1(C_3, E_r^{\text{pub}})$ $C_5 \leftarrow \text{hkdf}_1(C_4, \text{dh}(E_r^{\text{priv}}, E_i^{\text{pub}}))$ $C_6 \leftarrow \text{hkdf}_1(C_5, \text{dh}(E_r^{priv}, S_i^{pub}))$
- $C_7 \|\pi\| \mathbf{k}_3 \leftarrow \mathsf{hkdf}_3(C_6, \mathsf{psk})$

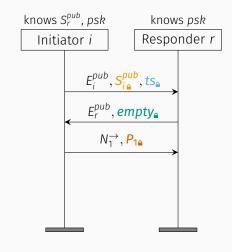




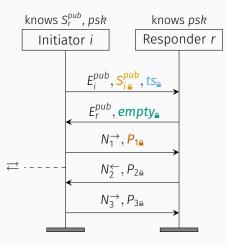
 $C_1 \leftarrow hkdf_1(C_0 = const_c, E_i^{pub})$ $C_2 \parallel \mathbf{k}_1 \leftarrow \text{hkdf}_2(C_1, \text{dh}(E_i^{priv}, S_r^{pub}))$ $H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$ $S_{i,0}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$ $C_3 \parallel \mathbf{k}_2 \leftarrow \text{hkdf}_2(C_2, \text{dh}(S_i^{priv}, S_r^{pub}))$ $ts_{\square} \leftarrow aenc(k_2, 0, timestamp(), H_3)$ $C_4 \leftarrow hkdf_1(C_3, E_r^{pub})$ $C_5 \leftarrow \text{hkdf}_1(C_4, \text{dh}(E_r^{\text{priv}}, E_i^{\text{pub}}))$ $C_6 \leftarrow hkdf_1(C_5, dh(E_r^{priv}, S_i^{pub}))$ $C_7 ||\pi|| \mathbf{k}_3 \leftarrow \mathsf{hkdf}_3(C_6, \mathsf{psk})$ $emptv_{a} \leftarrow aenc(k_{3}, 0, empty, H_{6})$



 $C_1 \leftarrow hkdf_1(C_0 = const_c, E_i^{pub})$ $C_2 \parallel \mathbf{k}_1 \leftarrow \text{hkdf}_2(C_1, \text{dh}(E_i^{priv}, S_r^{pub}))$ $H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$ $S_{i,0}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$ $C_3 \parallel \mathbf{k}_2 \leftarrow \text{hkdf}_2(C_2, \text{dh}(S_i^{priv}, S_r^{pub}))$ $ts_{\square} \leftarrow aenc(k_2, 0, timestamp(), H_3)$ $C_4 \leftarrow hkdf_1(C_3, E_r^{pub})$ $C_5 \leftarrow \text{hkdf}_1(C_4, \text{dh}(E_r^{\text{priv}}, E_i^{\text{pub}}))$ $C_6 \leftarrow hkdf_1(C_5, dh(E_r^{priv}, S_i^{pub}))$ $C_7 \|\pi\| \mathbf{k}_3 \leftarrow \mathsf{hkdf}_3(C_6, \mathsf{psk})$ $empty_{a} \leftarrow aenc(k_{3}, 0, empty, H_{6})$ $T \rightarrow || T \leftarrow hkdf_2(C_7, empt_V)$

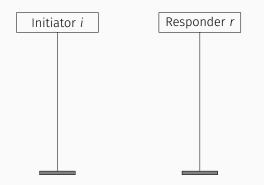


 $C_1 \leftarrow hkdf_1(C_0 = const_c, E_i^{pub})$ $C_2 \parallel \mathbf{k}_1 \leftarrow \text{hkdf}_2(C_1, \text{dh}(E_i^{priv}, S_r^{pub}))$ $H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$ $S_{i,0}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$ $C_3 \parallel \mathbf{k}_2 \leftarrow \text{hkdf}_2(C_2, \text{dh}(S_i^{priv}, S_r^{pub}))$ $ts_{\square} \leftarrow aenc(k_2, 0, timestamp(), H_3)$ $C_4 \leftarrow hkdf_1(C_3, E_r^{pub})$ $C_5 \leftarrow \text{hkdf}_1(C_4, \text{dh}(E_r^{priv}, E_i^{pub}))$ $C_6 \leftarrow hkdf_1(C_5, dh(E_r^{priv}, S_i^{pub}))$ $C_7 \|\pi\| \mathbf{k}_3 \leftarrow \mathsf{hkdf}_3(C_6, \mathsf{psk})$ $empty_{a} \leftarrow aenc(k_{3}, 0, empty, H_{6})$ $T \rightarrow || T \leftarrow hkdf_2(C_7, empt_V)$ $P_{10} \leftarrow \operatorname{aenc}(T^{\rightarrow}, N_1^{\rightarrow} = 0, P_1, empt_V)$

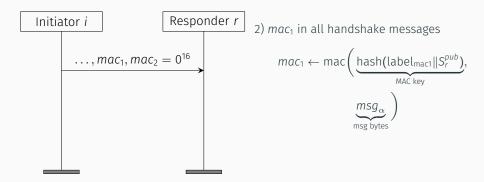


 $C_1 \leftarrow hkdf_1(C_0 = const_c, E_i^{pub})$ $C_2 \parallel \mathbf{k}_1 \leftarrow \text{hkdf}_2(C_1, \text{dh}(E_i^{priv}, S_r^{pub}))$ $H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$ $S_{i,0}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$ $C_3 \parallel \mathbf{k}_2 \leftarrow \text{hkdf}_2(C_2, \text{dh}(S_i^{priv}, S_r^{pub}))$ $ts_{\square} \leftarrow aenc(k_2, 0, timestamp(), H_3)$ $C_4 \leftarrow hkdf_1(C_3, E_r^{pub})$ $C_5 \leftarrow \text{hkdf}_1(C_4, \text{dh}(E_r^{priv}, E_i^{pub}))$ $C_6 \leftarrow \text{hkdf}_1(C_5, \text{dh}(E_r^{priv}, S_i^{pub}))$ $C_7 \|\pi\| \mathbf{k}_3 \leftarrow \mathsf{hkdf}_3(C_6, \mathsf{psk})$ $empty_{a} \leftarrow aenc(k_{3}, 0, empty, H_{6})$ $T \rightarrow || T \leftarrow hkdf_2(C_7, empt_V)$ $P_{10} \leftarrow \operatorname{aenc}(T^{\rightarrow}, N_1^{\rightarrow} = 0, P_1, empty)$

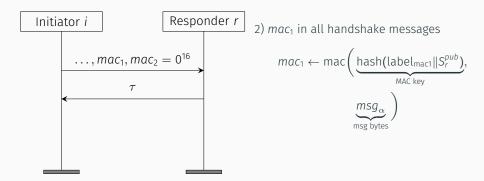
Protocol		
000		



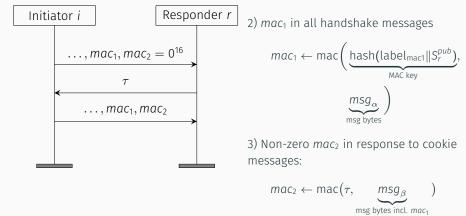
Protocol		
000		



Protocol		
000		



Protocol		
000		



	Protoc OO●	ol					
		-					

Protocol		
000		

- Secrecy · Secrecy
 - Forward secrecy

Protocol		
000		

- Secrecy · Secrecy
 - Forward secrecy
- Agreement · Mutual authentication

Protocol		
000		

- Secrecy · Secrecy
 - Forward secrecy
- Agreement · Mutual authentication
 - Session uniqueness
 - Channel binding

Protocol		
000		

- Secrecy · Secrecy
 - Forward secrecy
- Agreement · Mutual authentication
 - Session uniqueness
 - Channel binding
 - Resistance against key compromise impersonation (KCI)
 - Resistance against identity mis-binding

Protocol		
000		

Classic key exchange and secure channel properties

- Secrecy · Secrecy
 - Forward secrecy
- Agreement · Mutual authentication
 - Session uniqueness
 - Channel binding
 - Resistance against key compromise impersonation (KCI)
 - Resistance against identity mis-binding

Additional properties in WireGuard

- Resistance against denial of service
- Identity hiding

		Contributions •		
Our Contr	ributions			

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

• the entire protocol, including transport data messages

		Contributions •		
Our Cont	ributions			

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

- $\cdot\,$ the entire protocol, including transport data messages
- classic properties of key exchange and secure channels

	Contributions •		

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

- the entire protocol, including transport data messages
- classic properties of key exchange and secure channels
- identity hiding
- resistance against denial of service

		Contributions •		
Our Contr	ibutions			

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

- $\cdot\,$ the entire protocol, including transport data messages
- classic properties of key exchange and secure channels
- identity hiding
- resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman

	Contributions	
	•	

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

- $\cdot\,$ the entire protocol, including transport data messages
- classic properties of key exchange and secure channels
- identity hiding
- resistance against denial of service

Reusable contributions:

- Precise model of the Curve25519 elliptic curve for Diffie-Hellman
- Indifferentiability lemmas for chains of random oracle calls (e.g., chains of HMAC or HKDF function calls)

Model 000000 Analysis 0000 Conclusion 00

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif, analysing:

- $\cdot\,$ the entire protocol, including transport data messages
- $\cdot\,$ classic properties of key exchange and secure channels
- identity hiding
- resistance against denial of service

Reusable contributions:

- Precise model of the Curve25519 elliptic curve for Diffie-Hellman
- Indifferentiability lemmas for chains of random oracle calls (e.g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson'18, DonenfeldMilner'18 on WireGuard KobeissiNicolasBhargavan'19, Suter-Dörig'18, Girol'19 on IKpsk2

	Model	
	00000	

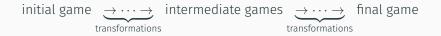
The CryptoVerif Automatic Protocol Prover

	Model	
	00000	

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game



- · security games in a probabilistic process calculus
- generates next game from previous game, given transformation

Proof assistant for game-based cryptographic proofs

- security games in a probabilistic process calculus
- generates next game from previous game, given transformation
- built-in proof strategy
- supports secrecy and correspondence properties

Proof assistant for game-based cryptographic proofs

- security games in a probabilistic process calculus
- generates next game from previous game, given transformation
- built-in proof strategy
- supports secrecy and correspondence properties
- \cdot successful termination \Rightarrow asymptotic security
- exact security given by probability bound

	Model
	00000

Analysis 2000 Conclusion OO

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)

Model O●OOOO Analysis 0000 Conclusion 00

- the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle

ontributions

Model O●OOOO Analysis 0000 Conclusion OO

- the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle
- the ChaCha20Poly1305 AEAD

Contributions O Model O●OOOO Analysis 0000 Conclusion OO

- the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle
- the ChaCha20Poly1305 AEAD
 - IND-CPA- and INT-CTXT-secure

Contribu O Model O●OOOO Analysis 0000 Conclusion 00

- the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle
- the ChaCha20Poly1305 AEAD
 - IND-CPA- and INT-CTXT-secure
 - $\cdot\,$ for identity hiding: preserves secrecy of associated data

ontributions

Model 0●0000 Analysis 0000 Conclusion OO

- \cdot the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle
- the ChaCha20Poly1305 AEAD
 - IND-CPA- and INT-CTXT-secure
 - $\cdot\,$ for identity hiding: preserves secrecy of associated data
- Curve25519 Diffie-Hellman

ontributions

Model 0●0000 Analysis 0000 Conclusion 00

- \cdot the BLAKE2s hash function (in hash, hkdf, mac)
 - \cdot random oracle
- the ChaCha20Poly1305 AEAD
 - IND-CPA- and INT-CTXT-secure
 - $\cdot\,$ for identity hiding: preserves secrecy of associated data
- Curve25519 Diffie-Hellman
 - Gap Diffie-Hellman in the appropriate subgroup

	Model	
	00000	

• any number of available parties (i.e., static key pairs)

	Model 00●000	

- any number of available parties (i. e., static key pairs)
 - \cdot two explicit honest parties *i* and *r*

	Model	
	00000	

- any number of available parties (i.e., static key pairs)
 - two explicit honest parties *i* and *r*
 - · adversary plays all other honest and dishonest parties

	Model	
	000000	

- any number of available parties (i.e., static key pairs)
 - two explicit honest parties *i* and *r*
 - $\cdot\,$ adversary plays all other honest and dishonest parties
- polynomial number of sessions
- polynomial number of transport data messages in a session

ibutions Model	
000000	

- any number of available parties (i.e., static key pairs)
 - two explicit honest parties *i* and *r*
 - $\cdot\,$ adversary plays all other honest and dishonest parties
- polynomial number of sessions
- polynomial number of transport data messages in a session
- prove security properties for *clean* sessions between *i* and *r*

ibutions Model	
000000	

- any number of available parties (i.e., static key pairs)
 - two explicit honest parties *i* and *r*
 - adversary plays all other honest and dishonest parties
- polynomial number of sessions
- polynomial number of transport data messages in a session
- prove security properties for *clean* sessions between *i* and *r*
 - a session is clean if it's not trivially broken i.e. if *not all* secrets of one party are compromised

oduction Protocol Contributions 000 O

Model 0000000 Analysis 0000 Conclusion OO

The Random Oracle in the Key Derivation

	Model	
	000000	

Reminder: a random oracle returns

	Model	
	000000	

Reminder: a random oracle returns

 $\cdot\,$ a fresh random value on new input

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- the same value than before on previously seen input

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

Mechanised analysis has to treat *all cases of collision* ⇒ CryptoVerif creates nested branches for hkdf inputs

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision

 \Rightarrow CryptoVerif creates nested branches for hkdf inputs (remember: 8 *dependent* random oracle calls with inputs v_0, \ldots, v_7)

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision

 \Rightarrow CryptoVerif creates nested branches for hkdf inputs (remember: 8 *dependent* random oracle calls with inputs v_0, \ldots, v_7)

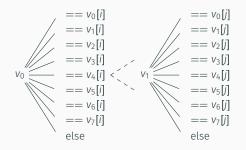
$$\begin{array}{c} ==v_0[i]\\ ==v_1[i]\\ ==v_2[i]\\ ==v_3[i]\\ ==v_4[i]\\ ==v_5[i]\\ ==v_6[i]\\ ==v_7[i]\\ else\end{array}$$

	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

Mechanised analysis has to treat *all cases of collision* \Rightarrow CryptoVerif creates nested branches for hkdf inputs (remember: 8 *dependent* random oracle calls with inputs v_0, \ldots, v_7)

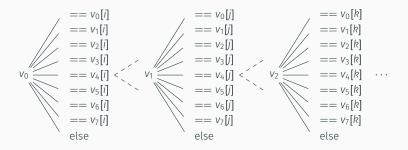


	Model	
	000000	

Reminder: a random oracle returns

- a fresh random value on new input
- \cdot the same value than before on previously seen input

 Mechanised analysis has to treat all cases of collision
 ⇒ CryptoVerif creates nested branches for hkdf inputs (remember: 8 dependent random oracle calls with inputs v₀,..., v₇)



	Model	
	000000	

8 chained calls to *one* random oracle.

- $C \leftarrow const$
- $C \qquad \leftarrow \mathsf{hkdf}(C, v_0)$
- $C \| \frac{k_1}{k_1} \qquad \leftarrow hkdf(C, v_1)$
- $C \| \boldsymbol{k_2} \qquad \leftarrow \mathsf{hkdf}(C, v_2)$
- $C \qquad \leftarrow \mathsf{hkdf}(C, v_3)$
- $C \qquad \leftarrow \mathsf{hkdf}(C, \mathsf{v}_4)$
- $C \qquad \leftarrow \mathsf{hkdf}(C, v_5)$
- $C \| \boldsymbol{\pi} \| \boldsymbol{k}_3 \quad \leftarrow \mathsf{hkdf}(C, v_6)$
- $\mathbf{T}^{\rightarrow} \| \mathbf{T}^{\leftarrow} \quad \leftarrow \mathsf{hkdf}(\mathsf{C}, \epsilon)$

	Model	
	000000	

8 chained calls to *one* random oracle.

С	$\leftarrow const$
С	$\leftarrow hkdf(C, v_0)$
C∥ <mark>k</mark> 1	$\leftarrow hkdf(C, v_1)$
C∥ k ₂	$\leftarrow hkdf(C, v_2)$
С	$\leftarrow hkdf(C, V_3)$
С	$\leftarrow hkdf(C, v_4)$
С	$\leftarrow hkdf(C, v_5)$
$C \ \boldsymbol{\pi} \ \boldsymbol{k}_3$	$\leftarrow hkdf(C, v_6)$
$T \rightarrow T \leftarrow$	$\leftarrow hkdf(C,\epsilon)$

3 independent calls to 3 *independent* random oracles.

<i>k</i> ₁	\leftarrow chain ₁ (v_0, v_1)
k ₂	$\leftarrow chain_2(v_0,v_1,v_2)$
$\pi \ k_3\ T \rightarrow \ T \leftarrow$	$\leftarrow chain_6(v_0, v_1, v_2, v_3, v_4, v_5, v_6)$

	Model	
	000000	

8 chained calls to *one* random oracle.

С	\leftarrow const
С	$\leftarrow hkdf(C, v_0)$
C <mark>k</mark> 1	$\leftarrow hkdf(C, v_1)$
C k 2	$\leftarrow hkdf(C, v_2)$
С	$\leftarrow hkdf(C, V_3)$
С	$\leftarrow hkdf(C, V_4)$
С	$\leftarrow hkdf(C, V_5)$
$C \ \boldsymbol{\pi} \ \boldsymbol{k}_3$	$\leftarrow hkdf(C, V_6)$
$T \rightarrow T \leftarrow$	$\leftarrow hkdf(C,\epsilon)$

3 independent calls to 3 *independent* random oracles.

 $\begin{array}{ll} k_1 & \leftarrow \operatorname{chain}_1(v_0, v_1) \\ k_2 & \leftarrow \operatorname{chain}_2(v_0, v_1, v_2) \\ \pi \| k_3 \| T^{\rightarrow} \| T^{\leftarrow} & \leftarrow \operatorname{chain}_6(v_0, v_1, v_2, v_3, v_4, v_5, v_6) \end{array}$

Idea: extract only whenever the protocol needs a key

	Model	
	000000	

Indifferentiable in any context: (manually proved, some lemmas with CryptoVerif)

8 chained calls to *one* random oracle.

С	$\leftarrow \text{const}$
С	$\leftarrow hkdf(C, v_0)$
C <mark>k</mark> 1	$\leftarrow hkdf(C, v_1)$
C k 2	$\leftarrow hkdf(C, v_2)$
С	$\leftarrow hkdf(C, V_3)$
С	$\leftarrow hkdf(C,v_4)$
С	$\leftarrow hkdf(C, v_5)$
$C \ \boldsymbol{\pi} \ \boldsymbol{k}_3$	$\leftarrow hkdf(C, v_6)$
$T \rightarrow T \leftarrow$	$\leftarrow hkdf(C,\epsilon)$

3 independent calls to 3 *independent* random oracles.

 $\begin{array}{ll} k_1 & \leftarrow \operatorname{chain}_1(v_0, v_1) \\ k_2 & \leftarrow \operatorname{chain}_2(v_0, v_1, v_2) \\ \pi \| k_3 \| T^{\rightarrow} \| T^{\leftarrow} & \leftarrow \operatorname{chain}_6(v_0, v_1, v_2, v_3, v_4, v_5, v_6) \end{array}$

Idea: extract only whenever the protocol needs a key

Introduction O Protocol

ontributions

Model 000000 Analysis 0000 Conclusion 00

A Precise Model of Curve25519

	Model 00000●	

A Precise Model of Curve25519

• Curve25519 is *not* a prime order group

			Model 00000●	
A Precise	Model of (Curve25519		

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation

			Model 00000●	
A Precise	e Model of C	Curve25519		

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime

			Model 00000●	
A Precise	e Model of (Curve25519		

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
 - curve points are represented by only the x coordinate

	Model 00000●	

A Precise Model of Curve25519

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
- curve points are represented by only the x coordinate

Updated model in the paper's long version: https://cryptoverif.inria.fr/WireGuard

	Model 00000●	

- A Precise Model of Curve25519
 - Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
 - curve points are represented by only the x coordinate
 - incoming public keys are not verified

Updated model in the paper's long version: https://cryptoverif.inria.fr/WireGuard

	Model 00000●	

A Precise Model of Curve25519

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
- curve points are represented by only the x coordinate
- incoming public keys are not verified
 - $\cdot\,$ could be on curve or twist, and in subgroup generated by g_0 or not

	Model 00000●	

- A Precise Model of Curve25519
 - Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
 - curve points are represented by only the *x* coordinate
 - incoming public keys are not verified
 - $\cdot\,$ could be on curve or twist, and in subgroup generated by g_0 or not
 - for each public key in the subgroup, there is a small number of *equivalent* public keys outside the subgroup

	Model 00000●	

- A Precise Model of Curve25519
 - Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
 - curve points are represented by only the *x* coordinate
 - incoming public keys are not verified
 - $\cdot\,$ could be on curve or twist, and in subgroup generated by g_0 or not
 - for each public key in the subgroup, there is a small number of *equivalent* public keys outside the subgroup
 - $\cdot\,$ produced by adding a low-order point to a public key

	Model 00000●	

A Precise Model of Curve25519

- Curve25519 is *not* a prime order group
 - group of order kq where k = 8 and q large prime, base point g_0 of order q used for honest key generation
 - twist of curve: group of order k'q' where k' = 4 and q' large prime
- curve points are represented by only the x coordinate
- incoming public keys are not verified
 - $\cdot\,$ could be on curve or twist, and in subgroup generated by g_{0} or not
- for each public key in the subgroup, there is a small number of *equivalent* public keys outside the subgroup
 - $\cdot\,$ produced by adding a low-order point to a public key
 - $\cdot\,$ they lead to the same shared secret

		Analysis	
		0000	

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

		Analysis	
		•000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

• agree on each other's identities

		Analysis	
		•000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys

Theoretical Attack:

• Let S_i , S_r , E_i , E_r , and psk be compromised.

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys

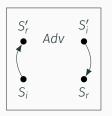
- Let S_i , S_r , E_j , E_r , and psk be compromised.
- Adversary constructs $S'_i \neq S_i, S'_r \neq S_r$ as different but equivalent static keys

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys



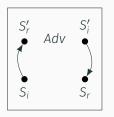
- Let S_i , S_r , E_j , E_r , and *psk* be compromised.
- Adversary constructs $S'_i \neq S_i, S'_r \neq S_r$ as different but equivalent static keys

		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys



- Let S_i , S_r , E_i , E_r , and *psk* be compromised.
- Adversary constructs $S'_i \neq S_i, S'_r \neq S_r$ as different but equivalent static keys
- ⇒ The two sessions derive the same traffic keys but are between different parties.

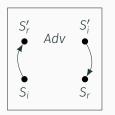
		Analysis	
		0000	

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

- agree on each other's identities
- even if one or both of them have been interacting with a dishonest party or a honest party with compromised keys

Theoretical Attack:



- Let S_i , S_r , E_i , E_r , and *psk* be compromised.
- Adversary constructs $S'_i \neq S_i, S'_r \neq S_r$ as different but equivalent static keys
- ⇒ The two sessions derive the same traffic keys but are between different parties.

Mitigation: include static public keys S_i^{pub} and S_r^{pub} into key derivation 12/17

duction Prot

otocol

ontributions

Model 000000 Analysis O●OO Conclusion OO

Identity Hiding: Known Weaknesses

		Analysis	
		0000	

		Analysis	
		0000	

WireGuard values DoS resistance over privacy

• knowing a candidate public key S_Y^{pub} , adversary can compare $mac_1 = mac(hash(label_{mac1} || S_Y^{pub}), msg_{\alpha})$

		Analysis	
		0000	

- knowing a candidate public key S_Y^{pub} , adversary can compare $mac_1 = mac(hash(label_{mac1} || S_Y^{pub}), msg_{\alpha})$
- \cdot similar test possible on the encrypted cookie

		Analysis	
		0000	

- knowing a candidate public key S_Y^{pub} , adversary can compare $mac_1 = mac(hash(label_{mac1} || S_Y^{pub}), msg_{\alpha})$
- similar test possible on the encrypted cookie
- at least VPN provider's keys usually public

		Analysis	
		0000	

- knowing a candidate public key S_Y^{pub} , adversary can compare $mac_1 = mac(hash(label_{mac1} || S_Y^{pub}), msg_{\alpha})$
- similar test possible on the encrypted cookie
- at least VPN provider's keys usually public
- \Rightarrow the MACs weaken identity hiding properties

		Analysis	
		0000	

- knowing a candidate public key S_Y^{pub} , adversary can compare $mac_1 = mac(hash(label_{mac1} || S_Y^{pub}), msg_{\alpha})$
- \cdot similar test possible on the encrypted cookie
- at least VPN provider's keys usually public
- \Rightarrow the MACs weaken identity hiding properties
 - $S_{i_{\Theta}}^{pub}$ not forward secret, would require a round-trip more

 Introduction
 Protocol
 Contributions
 Model
 Analysis
 Conclusion

 O
 OOO
 OOOOOO
 OOOOO
 OOOOO
 OO
 OO

		Analysis	
		0000	

$$S_{i\bullet}^{pub} \leftarrow \operatorname{aenc}(k_1, 0, S_i^{pub}, H_2)$$

		Analysis OO●O	

$$H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$$
$$S_{i \triangleq}^{pub} \leftarrow \text{aenc}(k_1, 0, S_i^{pub}, H_2)$$

		Analysis 00●0	

$$H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$$
$$S_{i \triangleq}^{pub} \leftarrow \text{aenc}(k_1, 0, S_i^{pub}, H_2)$$

• Adversary could compare additional data of $S_{i=}^{pub}$ with hash(hash(const_H|| S_{Y}^{pub})|| E_{i}^{pub})

		Analysis OO●O	

$$H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$$
$$S_{i \triangleq}^{pub} \leftarrow \text{aenc}(k_1, 0, S_i^{pub}, H_2)$$

- Adversary could compare additional data of $S_{i=}^{pub}$ with hash(hash(const_H|| S_{Y}^{pub})|| E_{i}^{pub})
- \Rightarrow AEAD needs to preserve AD secrecy

		Analysis 00€0	

$$H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$$
$$S_{i \cap}^{pub} \leftarrow \text{aenc}(k_1, 0, S_i^{pub}, H_2)$$

- Adversary could compare additional data of S_{i}^{pub} with hash(hash(const_H $||S_{Y}^{pub})||E_{i}^{pub}$)
- \Rightarrow AEAD needs to preserve AD secrecy
 - We prove: knowing S_{A1}^{pub} , S_{A2}^{pub} , S_{B1}^{pub} , S_{B2}^{pub} , adversary cannot distinguish

		Analysis OO●O	

$$H_2 \leftarrow \text{hash}(\text{hash}(\text{const}_H \| S_r^{pub}) \| E_i^{pub})$$
$$S_{i \cap}^{pub} \leftarrow \text{aenc}(k_1, 0, S_i^{pub}, H_2)$$

- Adversary could compare additional data of $S_{i=}^{pub}$ with hash(hash(const_H|| S_{Y}^{pub})|| E_{i}^{pub})
- \Rightarrow AEAD needs to preserve AD secrecy
 - We prove:

knowing S_{A1}^{pub} , S_{A2}^{pub} , S_{B1}^{pub} , S_{B2}^{pub} , adversary cannot distinguish

- public key S_{A1}^{pub} initiating sessions with S_{B1}^{pub}
- public key S_{A2}^{pub} initiating sessions with S_{B2}^{pub}

		Analysis 000●	
Metrics			

- approx. 1300 lines of model code
- 36 proof instructions
- 168 games produced by CryptoVerif
- 16 minutes runtime on Intel Xeon 3.6 GHz

		Analysis 000●	
Metrics			

- approx. 1300 lines of model code
- 36 proof instructions
- 168 games produced by CryptoVerif
- 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson'18: 11 games

		Analysis 000●	
Metrics			

- approx. 1300 lines of model code
- 36 proof instructions
- 168 games produced by CryptoVerif
- 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson'18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)

		Analysis 000●	
Metrics			

- approx. 1300 lines of model code
- 36 proof instructions
- 168 games produced by CryptoVerif
- 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson'18: 11 games

- uses a different Diffie-Hellman assumption (PRF-ODH)
- CryptoVerif formally encodes many small steps, separately

				Conclusion ●O
Results (Compared to	n Goals		

Classic key exchange and secure channel properties:

- Secrecy · Secrecy (by proving message indistinguishability)
 - Forward secrecy

Agreement • Mutual authentication (as of 2nd message)

- Session uniqueness
- Channel binding
- Resistance against key compromise impersonation (KCI)
- Resistance against identity mis-binding (except theoretical attack)

Additional properties in WireGuard:

- Resistance against denial of service (no replay of 1st msg, cookie enforces round-trip)
- Identity hiding (weak)

		Conclusion
		00

Conclusion and Main Take-Aways

- WireGuard *protocol* is cryptographically safe
 - \cdot weak identity hiding
- \cdot more context in key derivation prevents theoretical attack
 - $\cdot\,$ (teaser: and makes proofs easier)
- \cdot chains of random oracle calls can be reduced to fewer calls
- precise model for Curve25519 and Curve448

- detailed comparison to other analyses of WireGuard in our paper's related work section
 - the long version and our models with an updated version of Curve25519 are available at: https://cryptoverif.inria.fr/WireGuard