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Protocol and implementation in progress since 2015

• uses modern cryptography
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• works directly over UDP
• only a few thousand lines of code
• ongoing integration into the Linux kernel
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Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi ,

Spubi  ,

ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi )

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr ))

H2 ← hash(hash(constH∥Spubr )∥Epubi )

Spubi  ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr ))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr )

C5 ← hkdf1(C4,dh(Eprivr , Epubi ))

C6 ← hkdf1(C5,dh(Eprivr , Spubi ))

C7∥π∥k3 ← hkdf3(C6,psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)
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WireGuard’s DoS Protection During Handshake (simplified)

Initiator i Responder r

. . . ,mac1,mac2 = 016

τ

. . . ,mac1,mac2

1) timestamp in the first message

2) mac1 in all handshake messages

mac1 ← mac
(
hash(labelmac1∥Spubr )︸ ︷︷ ︸

MAC key

,

msgα︸ ︷︷ ︸
msg bytes

)

3) Non-zero mac2 in response to cookie
messages:

mac2 ← mac
(
τ, msgβ︸ ︷︷ ︸

msg bytes incl. mac1

)
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Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding
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Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages

• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2
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The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound
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Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)

• random oracle

• the ChaCha20Poly1305 AEAD

• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup
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The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]
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Introduction Protocol Contributions Model Analysis Conclusion

Simplification of the Key Derivation’s HKDF Chain

Indifferentiable in any context:
(manually proved, some lemmas with CryptoVerif)

8 chained calls to
one random oracle.

C ← const
C ← hkdf(C, v0)
C∥k1 ← hkdf(C, v1)
C∥k2 ← hkdf(C, v2)
C ← hkdf(C, v3)
C ← hkdf(C, v4)
C ← hkdf(C, v5)
C∥π∥k3 ← hkdf(C, v6)
T→∥T← ← hkdf(C, ϵ)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)
k2 ← chain2(v0, v1, v2)
π∥k3∥T→∥T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

Idea: extract only whenever the
protocol needs a key
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Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group

• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard
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Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation
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• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie

• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public

⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties

• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY ),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi  not forward secret, would require a round-trip more

13/17



Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr )∥Epubi )

Spubi  ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi  with
hash(hash(constH∥SpubY )∥Epubi )

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2
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Metrics

Numbers based on the largest variant of our model:

• approx. 1300 lines of model code
• 36 proof instructions
• 168 games produced by CryptoVerif
• 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson’18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)
• CryptoVerif formally encodes many small steps, separately
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Results Compared to Goals

Classic key exchange and secure channel properties:

Secrecy • Secrecy (by proving message indistinguishability)
• Forward secrecy

Agreement • Mutual authentication (as of 2nd message)
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding
(except theoretical attack)

Additional properties in WireGuard:

• Resistance against denial of service
(no replay of 1st msg, cookie enforces round-trip)

• Identity hiding (weak)
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Conclusion and Main Take-Aways

• WireGuard protocol is cryptographically safe
• weak identity hiding

• more context in key derivation prevents theoretical attack
• (teaser: and makes proofs easier)

• chains of random oracle calls can be reduced to fewer calls
• precise model for Curve25519 and Curve448

• detailed comparison to other analyses of WireGuard
in our paper’s related work section

• the long version and our models with an updated
version of Curve25519 are available at:
https://cryptoverif.inria.fr/WireGuard
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