
A Mechanised Cryptographic Proof of the
WireGuard Virtual Private Network Protocol

Benjamin Lipp, Bruno Blanchet, Karthik Bhargavan (INRIA Paris, Prosecco)
June 18, 2019

4th IEEE European Symposium on Security and Privacy

Introduction Protocol Contributions Model Analysis Conclusion

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no cryptographic agility (unlike e. g., TLS)
• works directly over UDP
• only a few thousand lines of code
• ongoing integration into the Linux kernel
• aims to replace OpenVPN and IPsec
• VPN providers are starting to adopt it

1/17

Introduction Protocol Contributions Model Analysis Conclusion

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no cryptographic agility (unlike e. g., TLS)

• works directly over UDP
• only a few thousand lines of code
• ongoing integration into the Linux kernel
• aims to replace OpenVPN and IPsec
• VPN providers are starting to adopt it

1/17

Introduction Protocol Contributions Model Analysis Conclusion

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no cryptographic agility (unlike e. g., TLS)
• works directly over UDP
• only a few thousand lines of code

• ongoing integration into the Linux kernel
• aims to replace OpenVPN and IPsec
• VPN providers are starting to adopt it

1/17

Introduction Protocol Contributions Model Analysis Conclusion

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no cryptographic agility (unlike e. g., TLS)
• works directly over UDP
• only a few thousand lines of code
• ongoing integration into the Linux kernel
• aims to replace OpenVPN and IPsec
• VPN providers are starting to adopt it

1/17

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi ,

Spubi ,

ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6,psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi ,

Spubi ,

ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6,psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi ,

ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6,psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)

C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6,psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr ,

empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6, psk)

empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr , empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6, psk)
empty ← aenc(k3, 0, empty,H6)

T→∥T← ← hkdf2(C7, empty)
P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr , empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6, psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr , empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6, psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s Main Protocol: Noise IKpsk2 (simplified)

Initiator i
knows Spubr , psk

Responder r
knows psk

Epubi , Spubi , ts

Epubr , empty

N→1 ,P1

⇄ N←2 ,P2

N→3 ,P3

C1 ← hkdf1(C0 = constC, Epubi)

C2∥k1 ← hkdf2(C1,dh(Eprivi , Spubr))

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

C3∥k2 ← hkdf2(C2,dh(Sprivi , Spubr))

ts ← aenc(k2, 0, timestamp(),H3)
C4 ← hkdf1(C3, Epubr)

C5 ← hkdf1(C4,dh(Eprivr , Epubi))

C6 ← hkdf1(C5,dh(Eprivr , Spubi))

C7∥π∥k3 ← hkdf3(C6, psk)
empty ← aenc(k3, 0, empty,H6)
T→∥T← ← hkdf2(C7, empty)

P1 ← aenc(T→,N→1 = 0, P1, empty)

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s DoS Protection During Handshake (simplified)

Initiator i Responder r

. . . ,mac1,mac2 = 016

τ

. . . ,mac1,mac2

1) timestamp in the first message

2) mac1 in all handshake messages

mac1 ← mac
(
hash(labelmac1∥Spubr)︸ ︷︷ ︸

MAC key

,

msgα︸ ︷︷ ︸
msg bytes

)

3) Non-zero mac2 in response to cookie
messages:

mac2 ← mac
(
τ, msgβ︸ ︷︷ ︸

msg bytes incl. mac1

)

3/17

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s DoS Protection During Handshake (simplified)

Initiator i Responder r

. . . ,mac1,mac2 = 016

τ

. . . ,mac1,mac2

1) timestamp in the first message

2) mac1 in all handshake messages

mac1 ← mac
(
hash(labelmac1∥Spubr)︸ ︷︷ ︸

MAC key

,

msgα︸ ︷︷ ︸
msg bytes

)

3) Non-zero mac2 in response to cookie
messages:

mac2 ← mac
(
τ, msgβ︸ ︷︷ ︸

msg bytes incl. mac1

)

3/17

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s DoS Protection During Handshake (simplified)

Initiator i Responder r

. . . ,mac1,mac2 = 016

τ

. . . ,mac1,mac2

1) timestamp in the first message

2) mac1 in all handshake messages

mac1 ← mac
(
hash(labelmac1∥Spubr)︸ ︷︷ ︸

MAC key

,

msgα︸ ︷︷ ︸
msg bytes

)

3) Non-zero mac2 in response to cookie
messages:

mac2 ← mac
(
τ, msgβ︸ ︷︷ ︸

msg bytes incl. mac1

)

3/17

Introduction Protocol Contributions Model Analysis Conclusion

WireGuard’s DoS Protection During Handshake (simplified)

Initiator i Responder r

. . . ,mac1,mac2 = 016

τ

. . . ,mac1,mac2

1) timestamp in the first message

2) mac1 in all handshake messages

mac1 ← mac
(
hash(labelmac1∥Spubr)︸ ︷︷ ︸

MAC key

,

msgα︸ ︷︷ ︸
msg bytes

)

3) Non-zero mac2 in response to cookie
messages:

mac2 ← mac
(
τ, msgβ︸ ︷︷ ︸

msg bytes incl. mac1

)
3/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication

• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding

• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Security Goals of WireGuard’s Secure Channel Protocol

Classic key exchange and secure channel properties

Secrecy • Secrecy
• Forward secrecy

Agreement • Mutual authentication
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding

Additional properties in WireGuard

• Resistance against denial of service
• Identity hiding

4/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages

• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages
• classic properties of key exchange and secure channels

• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages
• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages
• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman

• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages
• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

Our Contributions

Mechanised cryptographic proof of WireGuard using CryptoVerif,
analysing:

• the entire protocol, including transport data messages
• classic properties of key exchange and secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls
(e. g., chains of HMAC or HKDF function calls)

Related work: DowlingPaterson’18, DonenfeldMilner’18 on WireGuard
KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19
on IKpsk2

5/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game

→ · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games

→ · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation

• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties

• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

The CryptoVerif Automatic Protocol Prover

Proof assistant for game-based cryptographic proofs

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• security games in a probabilistic process calculus
• generates next game from previous game, given transformation
• built-in proof strategy
• supports secrecy and correspondence properties
• successful termination⇒ asymptotic security
• exact security given by probability bound

6/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)

• random oracle

• the ChaCha20Poly1305 AEAD

• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD

• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD

• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD
• IND-CPA- and INT-CTXT-secure

• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD
• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD
• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman

• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Cryptographic Assumptions

• the BLAKE2s hash function (in hash, hkdf, mac)
• random oracle

• the ChaCha20Poly1305 AEAD
• IND-CPA- and INT-CTXT-secure
• for identity hiding: preserves secrecy of associated data

• Curve25519 Diffie-Hellman
• Gap Diffie-Hellman in the appropriate subgroup

7/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)

• two explicit honest parties i and r
• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session
• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)
• two explicit honest parties i and r

• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session
• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)
• two explicit honest parties i and r
• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session
• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)
• two explicit honest parties i and r
• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session

• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)
• two explicit honest parties i and r
• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session
• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

Model of Environment and Corruption

• any number of available parties (i. e., static key pairs)
• two explicit honest parties i and r
• adversary plays all other honest and dishonest parties

• polynomial number of sessions
• polynomial number of transport data messages in a session
• prove security properties for clean sessions between i and r

• a session is clean if it’s not trivially broken
i. e. if not all secrets of one party are compromised

8/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input

• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision

⇒ CryptoVerif creates nested branches for hkdf inputs
(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

The Random Oracle in the Key Derivation

Reminder: a random oracle returns

• a fresh random value on new input
• the same value than before on previously seen input

Mechanised analysis has to treat all cases of collision
⇒ CryptoVerif creates nested branches for hkdf inputs

(remember: 8 dependent random oracle calls with inputs v0, . . . , v7)

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

9/17

Introduction Protocol Contributions Model Analysis Conclusion

Simplification of the Key Derivation’s HKDF Chain

Indifferentiable in any context:
(manually proved, some lemmas with CryptoVerif)

8 chained calls to
one random oracle.

C ← const
C ← hkdf(C, v0)
C∥k1 ← hkdf(C, v1)
C∥k2 ← hkdf(C, v2)
C ← hkdf(C, v3)
C ← hkdf(C, v4)
C ← hkdf(C, v5)
C∥π∥k3 ← hkdf(C, v6)
T→∥T← ← hkdf(C, ϵ)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)
k2 ← chain2(v0, v1, v2)
π∥k3∥T→∥T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

Idea: extract only whenever the
protocol needs a key

10/17

Introduction Protocol Contributions Model Analysis Conclusion

Simplification of the Key Derivation’s HKDF Chain

Indifferentiable in any context:
(manually proved, some lemmas with CryptoVerif)

8 chained calls to
one random oracle.

C ← const
C ← hkdf(C, v0)
C∥k1 ← hkdf(C, v1)
C∥k2 ← hkdf(C, v2)
C ← hkdf(C, v3)
C ← hkdf(C, v4)
C ← hkdf(C, v5)
C∥π∥k3 ← hkdf(C, v6)
T→∥T← ← hkdf(C, ϵ)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)
k2 ← chain2(v0, v1, v2)
π∥k3∥T→∥T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

Idea: extract only whenever the
protocol needs a key

10/17

Introduction Protocol Contributions Model Analysis Conclusion

Simplification of the Key Derivation’s HKDF Chain

Indifferentiable in any context:
(manually proved, some lemmas with CryptoVerif)

8 chained calls to
one random oracle.

C ← const
C ← hkdf(C, v0)
C∥k1 ← hkdf(C, v1)
C∥k2 ← hkdf(C, v2)
C ← hkdf(C, v3)
C ← hkdf(C, v4)
C ← hkdf(C, v5)
C∥π∥k3 ← hkdf(C, v6)
T→∥T← ← hkdf(C, ϵ)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)
k2 ← chain2(v0, v1, v2)
π∥k3∥T→∥T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

Idea: extract only whenever the
protocol needs a key

10/17

Introduction Protocol Contributions Model Analysis Conclusion

Simplification of the Key Derivation’s HKDF Chain

Indifferentiable in any context:
(manually proved, some lemmas with CryptoVerif)

8 chained calls to
one random oracle.

C ← const
C ← hkdf(C, v0)
C∥k1 ← hkdf(C, v1)
C∥k2 ← hkdf(C, v2)
C ← hkdf(C, v3)
C ← hkdf(C, v4)
C ← hkdf(C, v5)
C∥π∥k3 ← hkdf(C, v6)
T→∥T← ← hkdf(C, ϵ)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)
k2 ← chain2(v0, v1, v2)
π∥k3∥T→∥T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

Idea: extract only whenever the
protocol needs a key

10/17

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group

• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group

• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate

• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate

• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key

• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Precise Model of Curve25519

• Curve25519 is not a prime order group
• group of order kq where k = 8 and q large prime,
base point g0 of order q used for honest key generation

• twist of curve: group of order k′q′ where k′ = 4 and q′ large prime

• curve points are represented by only the x coordinate
• incoming public keys are not verified

• could be on curve or twist, and in subgroup generated by g0 or not

• for each public key in the subgroup, there is a small number of
equivalent public keys outside the subgroup

• produced by adding a low-order point to a public key
• they lead to the same shared secret

Updated model in the paper’s long version:
https://cryptoverif.inria.fr/WireGuard

11/17

https://cryptoverif.inria.fr/WireGuard

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding

Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities

• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.

• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

12/17

Introduction Protocol Contributions Model Analysis Conclusion

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or a honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr, Ei, Er, and psk be compromised.
• Adversary constructs S′i ̸= Si, S′r ̸= Sr
as different but equivalent static keys

⇒ The two sessions derive the same traffic keys but
are between different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation 12/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie

• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public

⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties

• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Known Weaknesses

WireGuard values DoS resistance over privacy

• knowing a candidate public key SpubY , adversary can compare
mac1 = mac(hash(labelmac1∥SpubY),msgα)

• similar test possible on the encrypted cookie
• at least VPN provider’s keys usually public
⇒ the MACs weaken identity hiding properties
• Spubi not forward secret, would require a round-trip more

13/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy

• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Identity Hiding: Our Contribution on Noise IKpsk2

H2 ← hash(hash(constH∥Spubr)∥Epubi)

Spubi ← aenc(k1, 0, Spubi ,H2)

• Adversary could compare additional data of Spubi with
hash(hash(constH∥SpubY)∥Epubi)

⇒ AEAD needs to preserve AD secrecy
• We prove:
knowing SpubA1 , S

pub
A2 , S

pub
B1 , S

pub
B2 , adversary cannot distinguish

• public key SpubA1 initiating sessions with SpubB1
• public key SpubA2 initiating sessions with SpubB2

14/17

Introduction Protocol Contributions Model Analysis Conclusion

Metrics

Numbers based on the largest variant of our model:

• approx. 1300 lines of model code
• 36 proof instructions
• 168 games produced by CryptoVerif
• 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson’18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)
• CryptoVerif formally encodes many small steps, separately

15/17

Introduction Protocol Contributions Model Analysis Conclusion

Metrics

Numbers based on the largest variant of our model:

• approx. 1300 lines of model code
• 36 proof instructions
• 168 games produced by CryptoVerif
• 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson’18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)
• CryptoVerif formally encodes many small steps, separately

15/17

Introduction Protocol Contributions Model Analysis Conclusion

Metrics

Numbers based on the largest variant of our model:

• approx. 1300 lines of model code
• 36 proof instructions
• 168 games produced by CryptoVerif
• 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson’18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)

• CryptoVerif formally encodes many small steps, separately

15/17

Introduction Protocol Contributions Model Analysis Conclusion

Metrics

Numbers based on the largest variant of our model:

• approx. 1300 lines of model code
• 36 proof instructions
• 168 games produced by CryptoVerif
• 16 minutes runtime on Intel Xeon 3.6 GHz

Compared to manual proof from DowlingPaterson’18: 11 games

• uses a different Diffie-Hellman assumption (PRF-ODH)
• CryptoVerif formally encodes many small steps, separately

15/17

Introduction Protocol Contributions Model Analysis Conclusion

Results Compared to Goals

Classic key exchange and secure channel properties:

Secrecy • Secrecy (by proving message indistinguishability)
• Forward secrecy

Agreement • Mutual authentication (as of 2nd message)
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation (KCI)
• Resistance against identity mis-binding
(except theoretical attack)

Additional properties in WireGuard:

• Resistance against denial of service
(no replay of 1st msg, cookie enforces round-trip)

• Identity hiding (weak)
16/17

Introduction Protocol Contributions Model Analysis Conclusion

Conclusion and Main Take-Aways

• WireGuard protocol is cryptographically safe
• weak identity hiding

• more context in key derivation prevents theoretical attack
• (teaser: and makes proofs easier)

• chains of random oracle calls can be reduced to fewer calls
• precise model for Curve25519 and Curve448

• detailed comparison to other analyses of WireGuard
in our paper’s related work section

• the long version and our models with an updated
version of Curve25519 are available at:
https://cryptoverif.inria.fr/WireGuard

17/17

https://cryptoverif.inria.fr/WireGuard

	Introduction
	Protocol
	Contributions
	Model
	Analysis
	Conclusion
	Appendix

