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What to Expect from Part II

A more complex example, a protocol with multiple messages:
Signed Diffie-Hellman Authenticated Key Exchange

What’s new?

• model a random oracle
• use a Computational Diffie-Hellman (CDH) assumption
• prove key secrecy using query secret
• prove authentication properties using
correspondence between events

• model a Public-Key Infrastructure using a list (table in
CryptoVerif)
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B
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a←$Z A, B, ga

b←$Z
sigB ← sign(A ∥B ∥ ga ∥ gb, skB)
event beginB(A,B, ga, gb)

A, B, gb, sigB
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kA ← hash((gb)a)
event endA(A,B, ga, gb)
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kB ← hash((ga)b)
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Signed Diffie-Hellman: Security Properties

• The shared secrets kA and kB are secret
(indistinguishable from random bitstrings of equal length)
query secret kA. query secret kB.

• If A is convinced to have concluded a session with B using
ephemerals ga,gb, then B actually started such a session
query x:G, y:G; inj-event(endA(A, B, x, y)) ==>
inj-event(beginB(A, B, x, y)).

• If B is convinced to have concluded a session with A using
ephemerals ga,gb, then A is likewise convinced
query x:G, y:G; inj-event(endB(A, B, x, y)) ==>
inj-event(endA(A, B, x, y))
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Cryptographic Assumptions

We use the following cryptographic assumptions to prove these
security properties:

• hash is a random oracle
• (sign, verify) is a UF-CMA-secure probabilistic signature
• the CDH assumption holds in the group G

Now: Step-by-step presentation of signedDH.ocv
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Types and Probabilities for the Signature

Types define names for subsets of the bitstrings. The annotations
restrict them on a high level.

type keyseed [large,fixed].
type pkey [bounded].
type skey [bounded].
type message [bounded].
type signature [bounded].

We define names for probabilities. They will appear in the final
probability bound.

proba Psign. (* breaking the UF-CMA property *)
proba Psigncoll. (* probability of collision between

independently generated keys *)
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Using the Macro: UF-CMA-secure Signature

expand UF_CMA_proba_signature(
(* types, to be defined outside the macro *)
keyseed,
pkey,
skey,
message,
signature,
(* names for functions defined by the macro *)
skgen,
pkgen,
sign,
verify,
(* probabilities, to be defined outside the macro *)
Psign,
Psigncoll

).
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Functions Defined by the Signature Macro [lib]

In this example, we use a probabilistic signature. The macro makes
this transparent for us, by defining the seed type and a sign
wrapper function.

fun skgen(keyseed):skey.
fun pkgen(keyseed):pkey.

fun verify(message, pkey, signature): bool.
fun sign_r(message, skey, sign_seed): signature.

letfun sign(m: message, sk: skey) =
r <-R sign_seed; sign_r(m, sk, r).

The macro in CryptoVerif’s default library defines the equation for
correctness (not shown here).
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Diffie-Hellman Part I

type Z [large,bounded].
type G [large,bounded].

proba PCollKey1.
proba PCollKey2.

CryptoVerif’s default library comes
with several macros for groups.
We’ll use a basic group in which
some collision probabilities are
negligible.

expand DH_proba_collision(
G, (* type of group elements *)
Z, (* type of exponents *)
g, (* group generator *)
exp, (* exponentiation function *)
exp', (* exp. func. after transformation *)
mult, (* func. for exponent multiplication *)
PCollKey1,(* g^(fresh x) collides with indep. Y *)
PCollKey2 (* g^(fr. x * fr. y) coll. w/ indep. Y *)

).
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Diffie-Hellman Part II [lib]

The macro defines the exponentiation function, a group generator,
and equations for exponent multiplication. An extract:

fun exp(G, Z): G.
const g: G.

fun mult(Z, Z): Z.
equation builtin commut(mult).

equation forall a:G, x:Z, y:Z;
exp(exp(a, x), y) = exp(a, mult(x, y)).
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Diffie-Hellman Part III

Assumptions like CDH, DDH, GDH, … must be instantiated with a
separate macro. We use CDH, indicating the previously defined group:

proba pCDH. (* probability of breaking CDH in G *)
expand CDH(G, Z, g, exp, exp', mult, pCDH).

This macro implements a multi-key version of (simplified
presentation):

SuccCDHG (t) = max
A

Pr
x,y←$ Z

[gxy ← A(gx,gy)] is negligible.
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Random Oracle Part I – Definition

A random oracle is an idealized random function that returns

• an independent uniformly random value on new input,
• the same value than before on previously seen input.

To model this, all calls, also adversarial ones, must be observed by
the game.

type hashfunction [fixed].

expand ROM_hash(
hashfunction, (* type for hash function choice *)
G, (* type of input *)
key, (* type of output *)
h, (* name of hash function *)
hashoracle, (* process defining the hash oracle *)
qH (* parameter: number of calls *)

).
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Random Oracle Part II – Macro Internals [lib]

The macro defines the hash function. The first parameter models the
choice of the specific hash function: The adversary could call hash,
but does not know the value the protocol uses for the 1st parameter.

fun hash(hashfunction, G): key.

The macro defines the oracle we must expose such that the
adversary can use the RO:

param qH.

let hashoracle(hf: hashfunction) :=
foreach ih <= qH do
Ohash(x: G) :=
return(hash(hf, x)).

It allows qH calls, a parameter that will appear in the final probability
formula.
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Random Oracle Part III – Usage

In the initial game, we sample a random hash function

hf <-R hashfunction;

and use it in each call of hash:

kA <- hash(hf, gab);

We must include the process defined by the macro, such that the
adversary can access the random oracle for its own calls:

run hashoracle(hf)
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Random Oracle Part IV – Applying the Assumption [lib]

When applying the RO assumption, CryptoVerif replaces each call of
the hash function

foreach i <= N do (* ... *) hash(hf, x) (* ... *)

by an array lookup, comparing with all other inputs:

find j <= N suchthat defined(x[j], k[j]) && x = x[j]
then k[j]
else k <-R key; k

There will be one find branch per hash call.
In particular, the hash call in the hashoracle process will be
replaced by a table lookup, comparing with all hash inputs used in
the entire game.
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Setting up the Game

In the game setup, we create signature keypairs for the two honest
parties. We can define functions (letfun) that CryptoVerif will inline.
letfun keygen() =

rk <-R keyseed;
sk <- skgen(rk);
pk <- pkgen(rk);
(sk, pk).

The initial game starts after the process keyword.
process

Ostart() :=
hf <-R hashfunction;
let (skA: skey, pkA: pkey) = keygen() in
let (skB: skey, pkB: pkey) = keygen() in
return(pkA, pkB);
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The Complete Main Process

param NA, NB, NK. (* number of calls *)

process
Ostart() :=
hf <-R hashfunction;
let (skA: skey, pkA: pkey) = keygen() in
let (skB: skey, pkB: pkey) = keygen() in
return(pkA, pkB);
(
(foreach iA <= NA do run processA(hf, skA))

|
(foreach iB <= NB do run processB(hf, skB))

|
(foreach iK <= NK do run pki(pkA, pkB))

|
run hashoracle(hf) (* # of calls def. inside *)

) 16



Public Key Infrastructure

We define a type for hosts, a list for (host, public key) tuples, and two
honest hosts.

type host [bounded].
table keys(host, pkey).
const A, B: host. (* The two honest peers *)

We allow the adversary to register additional entries:

let pki(pkA: pkey, pkB: pkey) =

Opki(hostZ: host, pkZ: pkey) :=
if hostZ = B then insert keys(B, pkB)
else if hostZ = A then insert keys(A, pkA)
else insert keys(hostZ, pkZ).

We will use get keys(=hostX, pkX) to retrieve X’s key.
17



Sequential Oracles in Processes

We expose one oracle for each protocol message.

OA1, OA3, OAfin, and OB2, OBfin can only be called in this
order. A “session” identifier is implicit (the replication index).

let processA(...) =
OA1(...) :=
...
return(...);

OA3(...) :=
...
return(...);

OAfin(...) :=
...
return(...).

let processB(...) =
OB2(...) :=

...
return(...);

OBfin(...) :=
...
return(...)

18



1st and 2nd Message

Creating the 1st message. The adversary chooses A’s peer.

let processA(hf:hashfunction, skA:skey) =
OA1(hostX: host) :=
a <-R Z; ga <- exp(g,a);
return(A, hostX, ga);

Consuming the 1st and creating the 2nd message. B only continues if
the message is for B: =B. Event beginB is recorded.

let processB(hf:hashfunction, skB:skey) =
OB2(hostY: host, =B, ga: G) :=
b <-R Z; gb <- exp(g,b);
sig <- sign(msg2(hostY, B, ga, gb), skB);
event beginB(hostY, B, ga, gb);
return(hostY, B, gb, sig);
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2nd and 3rd Message

let processB(hf:hashfunction, skB:skey) =
OB2(hostY:host, =B, ga:G) :=
(* ... *)
return(hostY, B, gb, sig);

If A can verify the signature, event endA is recorded.
let processA(hf:hashfunction, skA:skey) =

(* ... *)

OA3(=A, =hostX, gb: G, s: signature) :=
get keys(=hostX, pkX) in
if verify(msg2(A, hostX, ga, gb), pkX, s) then
gab <- exp(gb, a); kA <- hash(hf, gab);
sig <- sign(msg3(A, hostX, ga, gb), skA);
event endA(A, hostX, ga, gb);
return(sig);
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3rd Message and Finish

If B can verify the signature, event endB is recorded.
OBfin(s:signature) :=
get keys(=hostY, pkY) in
if verify(msg3(hostY, B, ga, gb), pkY, s) then
gab <- exp(ga, b);
kB <- hash(hf, gab);
event endB(hostY, B, ga, gb);

We want to prove secrecy only in case the two honest peers
interacted. Only in this case we assign the shared secret to another
variable.

if hostY = A then (
keyB:key <- kB

) else
return(kB).
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Finish on A’s Side

We could have merged that into OA3, but it is clearer this way.

OAfin() :=
if hostX = B then (keyA:key <- kA)
else return(kA).

Now we have variables keyA and keyB that are only defined for
honest sessions, for which we want to prove key secrecy. Thus, we
can ask CryptoVerif to prove:

query secret keyA.
query secret keyB.

Note that this way, all honest sessions are “test” sessions.
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Definition: Key Secrecy for kA (and similar kB) … [1]

… if an adversary has a negligible probability of distinguishing
keys kA from uniformly random bitstrings of same length:

Succkey-secrecy,kAsDH (t,nA,nB,nK,qH) = max
A
| Pr [Greal(A)⇒ 1]

− Pr [Grandom(A)⇒ 1] |

• where Greal is the original game, and
• in Grandom, the keys kA are replaced by independent uniformly
random bitstrings of the same length

and where A

• runs in time at most t
• starts at most nA sessions for A, and at most nB for B
• registers at most nK public keys (incl. A and B)
• calls the hash oracle at most qH times.
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Correspondence Queries

Events need to be declared:

event endA(host, host, G, G).
event beginB(host, host, G, G).
event endB(host, host, G, G).

A can authenticate B, even if any shared secret leaks:

query y: G, x: G;
inj-event(endA(A, B, x, y))
==> inj-event(beginB(A, B, x, y))
public_vars keyA, keyB.

B can authenticate A, even if any shared secret leaks:

query y: G, x: G;
inj-event(endB(A, B, x, y))
==> inj-event(endA(A, B, x, y))
public_vars keyA, keyB.
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Definition: Authentication of A (and similar for B) … [2]

… if an adversary has a negligible probability of producing a
sequence of events that violates the correspondence property:

Succauth,AsDH (t,nA,nB,nK,qH) =

max
A

Pr

 AOstart,OA·,OB·,Opki,OH : A produces a sequence of events
such that not every endB(A,B,ga,gb) is preceeded
by a distinct endA(A,B,ga,gb)


where A

• runs in time at most t
• starts at most nA sessions for A, and at most nB for B
• registers at most nK public keys (incl. A and B)
• calls the hash oracle at most qH times.
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Proof and Result

(* demo *)
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Interactive Mode

Include interactive in the proof environment to start the
interactive mode:

proof {
interactive

}

• out_game "filename" outputs the current game. Use a .ocv
extension such that your editor highlights the syntax.

• crypto assumption(function) applies the assumption to
the function. Example: crypto rom(hash)

• success tries to prove the queries
• simplify tries to simplify the current game
• quit leaves interactive mode and continues non-interactively.
• Ctrl+D ends the programme

27



What We Covered Today

• Introduction to the syntax and semantics of games
• Model simple primitives and protocols
• Use macros from the default library: symmetric encryption, MAC,
signature, random oracle, basic Diffie-Hellman

• Basic interactive interaction with CryptoVerif
• Prove secrecy and correspondence properties
• Read the final result
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Next Steps with CryptoVerif

• Try the exercices and reach us on VeriCrypt’s Zulip during the
next days

• syntax highlighting is available for Vim and Emacs

• The reference manual is in docs/manual.pdf
• More examples are in the directory examples

• beware, spoilers for the exercices
• look for .ocv files, they use the oracle syntax presented in this
tutorial. (.pcv and .cv use the channel frontend)

• Subscribe to the mailinglist (low activity)
https://sympa.inria.fr/sympa/subscribe/cryptoverif
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