
Examination of the module MPRI 2-30

Cryptographic protocols: formal and computational proofs

(Solution)

March 2, 2016

2 CryptoVerif

2.1 Exercise 1

(1) X‖Y = f−1sk (c), r = H(X)⊕ Y , m‖0 = X ⊕G(r). One can check that the last k1 bits of
X ⊕G(r) are 0.

(2) declare the type large

(3) type Dr has size k0, type Dow has size n− k0, type Dm has size n− k0 − k1.

let hashoracleG(hkg: hashkey) = !iG <= qG in(chG1, x:Dr); out(chG2, G(hkg,x)).

let hashoracleH(hkh: hashkey) = !iH <= qH in(chH1, x:Dow); out(chH2, H(hkh,x)).

let processT(hkg: hashkey, hkh: hashkey, pk: pkey) =

in(c1, (m1: Dm, m2: Dm));

new b1: bool;

(* The next line is equivalent to an "if" that will not be

expanded. This is necessary for the system to succeed in

proving the protocol. *)

let menc = test(b1, m1, m2) in

new r: Dr;

let s = xorDow(concatm(menc, zero), G(hkg,r)) in

let t = xorDr(r, H(hkh,s)) in

out(c2, f(pk, concat(s,t))).

process

in(start, ());

new hkh: hashkey;

new hkg: hashkey;

new r: seed;

let pk = pkgen(r) in

let sk = skgen(r) in (* Not necessary for IND-CPA *)

out(c0, pk);

(hashoracleG(hkg) | hashoracleH(hkh) | processT(hkg, hkh, pk))

(4) Random oracle of H and G can be applied directly. The property of ⊕ cannot (even
after syntactic transformation) because r is used in G(r). One-wayness cannot (even after
syntactic transformation) because the argument of f is not random.

1

Applying the random oracle assumption replaces G(r) with a fresh random value r′, which
allows applying the assumption of ⊕ twice. (Actually, in the hash oracles, we need to
introduce events using Shoup lemma to avoid leaking r.) After that, the argument of f
is random, so one-wayness can be applied (after replacing pk with its value and removing
the assignment to sk).

(5) We need to add a decryption oracle:

let processD(hkg: hashkey, hkh: hashkey, sk: skey) =

!qD

in(c3, c: D);

find suchthat defined(cT) && c = cT then yield else

let concat(s,t) = invf(sk, c) in

let r = xorDr(t, H(hkh, s)) in

let mz = xorDow(s, G(hkg, r)) in

let concatm(m, =zero) = mz in

out(c4, m).

processD(hkg, hkh, sk) is added to final parallel composition, and the last line of
processT is replaced with

let cT: D = f(pk, concat(s,t)) in

out(c2, cT).

so that cT is defined.

2.2 Exercise 2

(1) let processA(pkA: spkey, skA: sskey, pkB: pkey) =

in(c1, pkX: pkey);

new k:key;

(* The signature and encryption are probabilistic, CryptoVerif

adds the random number generation internally, but you may

also write it explicitly, e.g.:

new r: sseed;

sign(k, skA, r) *)

let payload = concat(pkA, k, sign(k, skA)) in

out(c2, penc(payload, pkX));

(* Test for secrecy *)

in(c5, ());

if pkX = pkB then

let k’:key = k in

yield.

let processB(skB: skey, pkA: spkey) =

in(c3, m:bitstring);

let pinjbot(concat(pkY, kB, s)) = pdec(m, skB) in

if check(kB, pkY, s) then

(* Test for secrecy *)

if pkY = pkA then

let k’’: key = kB in

yield.

2

process

in(start, ());

new rkA: skeyseed;

let pkA = spkgen(rkA) in

let skA = sskgen(rkA) in

new rkB: pkeyseed;

let pkB = pkgen(rkB) in

let skB = skgen(rkB) in

out(c7, (pkA, pkB));

((! NA processA(pkA, skA, pkB)) |

(! NB processB(skB, pkA)))

(2) The key k that A has is secret, but the key that B has is not secret. The attack is
the well-known attack against the Denning-Sacco protocol (similar to the one against
Needham-Schroeder public key):

A→ I : EpkI (pkA, k,SskA(k))

I(A)→ B : EpkB (pkA, k,SskA(k))

A starts a session with the attacker I, which forwards the message to B after reencrypting
it under pkB. The fix consists in adding the public key of B in the signature.

3

