Examination of the module MPRI 2-30
Cryptographic protocols: formal and computational proofs

(Solution)
March 2, 2016

2 CryptoVerif

2.1 Exercise 1

(1) $X \parallel Y = f_{sk}^{-1}(c)$, $r = H(X) \oplus Y$, $m \parallel 0 = X \oplus G(r)$. One can check that the last k_1 bits of $X \oplus G(r)$ are 0.

(2) declare the type large

(3) type Dr has size k_0, type Dow has size $n - k_0$, type Dm has size $n - k_0 - k_1$.

let hashoracleG(hkg: hashkey) = !iG <= qG in(chG1, x:Dr); out(chG2, G(hkg,x)).

let hashoracleH(hkh: hashkey) = !iH <= qH in(chH1, x:Dow); out(chH2, H(hkh,x)).

let processT(hkg: hashkey, hkh: hashkey, pk: pkey) =
 in(c1, (m1: Dm, m2: Dm));
 new b1: bool;
 (* The next line is equivalent to an "if" that will not be expanded. This is necessary for the system to succeed in proving the protocol. *)
 let menc = test(b1, m1, m2) in
 new r: Dr;
 let s = xorDow(concatm(menc, zero), G(hkg,r)) in
 let t = xorDr(r, H(hkh,s)) in
 out(c2, f(pk, concat(s,t))).

process
 in(start, ());
 new hkh: hashkey;
 new hkg: hashkey;
 new r: seed;
 let pk = pkgen(r) in
 let sk = skgen(r) in (* Not necessary for IND-CPA *)
 out(c0, pk);
 (hashoracleG(hkg) | hashoracleH(hkh) | processT(hkg, hkh, pk))

(4) Random oracle of H and G can be applied directly. The property of \oplus cannot (even after syntactic transformation) because r is used in $G(r)$. One-wayness cannot (even after syntactic transformation) because the argument of f is not random.
Applying the random oracle assumption replaces $G(r)$ with a fresh random value r', which allows applying the assumption of \oplus twice. (Actually, in the hash oracles, we need to introduce events using Shoup lemma to avoid leaking r.) After that, the argument of f is random, so one-wayness can be applied (after replacing pk with its value and removing the assignment to sk).

(5) We need to add a decryption oracle:

```plaintext
let processD(hkg: hashkey, hkh: hashkey, sk: skey) =
  !qD
  in(c3, c: D);
  find such that defined(cT) && c = cT then yield else
  let concat(s,t) = invf(sk, c) in
  let r = xorDr(t, H(hkh, s)) in
  let mz = xorDow(s, G(hkg, r)) in
  let concatm(m, =zero) = mz in
  out(c4, m).

processD(hkg, hkh, sk) is added to final parallel composition, and the last line of processT is replaced with

let cT: D = f(pk, concat(s,t)) in
out(c2, cT).

so that $cT$ is defined.

2.2 Exercise 2

(1) let processA(pkA: spkey, skA: sskey, pkB: pkey) =
  in(c1, pkX: pkey);
  new k:key;
  (* The signature and encryption are probabilistic, CryptoVerif
     adds the random number generation internally, but you may
     also write it explicitly, e.g.:
     new r: sseed;
     sign(k, skA, r) *)
  let payload = concat(pkA, k, sign(k, skA)) in
  out(c2, penc(payload, pkX));
  (* Test for secrecy *)
  in(c5, ());
  if pkX = pkB then
  let k': key = k in
  yield.

let processB(skB: skey, pkA: spkey) =
  in(c3, m: bitstring);
  let pinjbot(concat(pkY, kB, s)) = pdec(m, skB) in
  if check(kB, pkY, s) then
  (* Test for secrecy *)
  if pkY = pkA then
  let k'': key = kB in
  yield.
```
process
 in(start, ());
 new rkA: skeyseed;
 let pkA = spkgen(rkA) in
 let skA = sskgen(rkA) in
 new rkB: pkeyseed;
 let pkB = pkgen(rkB) in
 let skB = skgen(rkB) in
 out(c7, (pkA, pkB));
 (! NA processA(pkA, skA, pkB)) |
 (! NB processB(skB, pkA))

(2) The key k that A has is secret, but the key that B has is not secret. The attack is
the well-known attack against the Denning-Sacco protocol (similar to the one against
Needham-Schroeder public key):

$$A \rightarrow I : \mathcal{E}_{pk_A}(pk_A, k, \mathcal{S}_{sk_A}(k))$$

$$I(A) \rightarrow B : \mathcal{E}_{pk_B}(pk_A, k, \mathcal{S}_{sk_A}(k))$$

A starts a session with the attacker I, which forwards the message to B after reencrypting
it under pk_B. The fix consists in adding the public key of B in the signature.