Composition Theorems for CryptoVerif and Application to TLS 1.3

Bruno Blanchet

INRIA Paris
Bruno.Blanchet@inria.fr

Year 2023-24
Introduction

- **Composition** between
 - a key exchange protocol
 - a protocol that uses the key

- Results stated in the CryptoVerif framework:
 - computational model
 - formal framework for stating the composition theorem
 - prove bigger protocols in CryptoVerif
 - prove protocols with loops in CryptoVerif

Adapt and extend previous computational composition results by Brzuska, Fischlin et al. [CCS’11, CCS’14 and CCS’15]
Application to TLS 1.3

Why TLS 1.3?

- Important protocol, just standardized
- Well designed to allow composition
- Contains loops:
 - Unbounded number of handshakes and key updates
- Variety of compositions:
 - In most cases, the key exchange provides injective authentication
 - For 0-RTT data = data sent by the client to the server immediately after the message (ClientHello):
 - possible replay, so non-injective authentication
 - variant for the case of altered ClientHello
 - Simpler composition theorem for key updates
Security properties proved by CryptoVerif

- **Indistinguishability**: $Q \approx^V Q'$ when an adversary with access to the variables V has a negligible probability of distinguishing Q from Q'.

- **Secrecy**: Q preserves the secrecy of x with public variables V when an adversary with access to the variables V has a negligible probability of distinguishing the values of x in several sessions from independent random values.

- **Correspondences**: If some events have been executed, then other events have been executed. Example:

 $$\text{event}(e_1(x)) \rightarrow \text{event}(e_2(x))$$

 Q satisfies the correspondence $corr$ with public variables V when an adversary with access to the variables V has a negligible probability of breaking $corr$.
The most basic composition theorem
The most basic composition theorem

Theorem (Assumptions)

Let C be any context with one hole, without replications above the hole. Let M be a term of type T. Let

$$S_1 = C[\text{let } k = M \text{ in return}(); Q_1]$$

$$S_2 = O_2() := k \leftarrow T; \text{return}(); Q_2$$

where k is the only variable common to S_1 and S_2; S_1 and S_2 have no common oracle, no common event, and no common table; S_1 and S_2 do not contain oracle calls; and k does not occur in C and Q_1.

Let

$$S_{\text{composed}} = C[\text{let } k = M \text{ in return}(); (Q_1 \mid Q_2)]$$
The most basic composition theorem

Theorem (First conclusion)

\[
S_1 = C[\texttt{let } k = M \texttt{ in return(); } Q_1]
\]
\[
S_2 = O_2() := k \overset{R}{\leftarrow} T; \texttt{return(); } Q_2
\]
\[
S_{\text{composed}} = C[\texttt{let } k = M \texttt{ in return(); } (Q_1 \mid Q_2)]
\]

1. If \(S_1 \) preserves the secrecy of \(k \) with public variables \(V \ (k \notin V) \), then we can transfer security properties from \(S_2 \) to \(S_{\text{composed}} \).

\(S_{\text{composed}} \) with the events of \(S_1 \) removed is indistinguishable with public variables \(V \cup (\text{var}(S_2) \setminus \{k\}) \) from an evaluation context interacting with \(S_2 \).

Intuition: The secrecy of \(k \) allows us to replace \(k \) with a random key.
The most basic composition theorem

Theorem (Second conclusion)

\[
\begin{align*}
S_1 &= C[\text{let } k = M \text{ in return}(); Q_1] \\
S_2 &= O_2() := k \leftarrow T; \text{return}(); Q_2 \\
S_{\text{composed}} &= C[\text{let } k = M \text{ in return}(); (Q_1 \mid Q_2)]
\end{align*}
\]

We can transfer security properties from \(S_1 \) to \(S_{\text{composed}} \), provided they are proved with public variable \(k \).

\(S_{\text{composed}} \) is indistinguishable with public variables \(\text{var}(S_{\text{composed}}) \) from an evaluation context interacting with \(S_1 \) with access to \(k \).
Main theorem

\[S_1: \quad \begin{array}{c}
A \\
k_A \downarrow \\
B \\
k_B \uparrow
\end{array} \]

\[S_2: \quad \begin{array}{c}
k \xleftarrow{R} T \\
A \downarrow \\
B \\
\end{array} \]

\[S_{\text{composed}}: \quad \begin{array}{c}
A \\
k_A \downarrow \\
B \\
k_B \uparrow
\end{array} \]

\(S_1 \) may run several sessions of \(A \) and \(B \).
Replicating S_2

Consider:

$$S_2 = O() := \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots$$

$$\text{insert } T(M') \ldots \text{get } T(z) \text{ such that} \ldots$$

We want to replicate S_2:

$$\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O() := \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots$$

$$\text{insert } T(M') \ldots \text{get } T(z) \text{ such that} \ldots$$
Replicating S_2

Consider:

\[S_2 = O() := \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots \]

\[\text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots \]

We want to replicate S_2:

\[\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O[\tilde{i}()] := \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(M) \ldots \]

\[\text{insert } T(M') \ldots \text{get } T(z[\tilde{i}]) \text{ such that } \ldots \]

Variables and oracles implicitly with indices of replication.
Replicating S_2

Consider:

\[
S_2 = O() := \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots \\
\text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots
\]

We want to replicate S_2:

\[
\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O[\tilde{i}]() := \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(\tilde{i}, M) \ldots \\
\text{insert } T(\tilde{i}, M') \ldots \text{get } T(= \tilde{i}, z[\tilde{i}]) \text{ such that } \ldots
\]

We could add indices to events and tables to distinguish the various sessions.
Replicating S_2

Consider:

\[
S_2 = O() := \ldots O_1(y : T) := \ldots \text{event } e(M)\ldots \\
\text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots
\]

We want to replicate S_2:

\[
\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O[\tilde{i}]() := \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(\tilde{i}, M)\ldots \\
\text{insert } T(\tilde{i}, M') \ldots \text{get } T(= \tilde{i}, z[\tilde{i}]) \text{ such that } \ldots
\]

Problem: this is not preserved by composition.

In the key exchange, partenered sessions exchange the same messages, but may not have the same replication indices.

Also in the composed system.
Replicating S_2

Consider:

$$S_2 = O() := \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots$$

$$\text{insert } T(M') \ldots \text{get } T(z) \text{ such that} \ldots$$

We want to replicate S_2:

$$\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O[\tilde{i}](x : T_{\text{sid}}) \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(x, M) \ldots$$

$$\text{insert } T(x, M') \ldots \text{get } T(= x, z[\tilde{i}]) \text{ such that} \ldots$$

Partnered sessions can be determined by a session identifier computed from the messages in the protocol.

The protocol that uses the key receives the session identifier in a variable x.
Replicating S_2

Consider:

\[S_2 = O() := P \]
\[P = \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots \]
\[\quad \text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots \]

We replicate S_2:

\[S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O', T_{\text{sid}}, S_2) \]
\[= \text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O'[\tilde{i}](x : T_{\text{sid}}) := \]
\[\quad \text{if that value of } x \text{ never used before then} \]
\[\text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, P) \]
\[\text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, P) = \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(x, M) \ldots \]
\[\quad \text{insert } T(x, M') \ldots \text{get } T(= x, z[\tilde{i}]) \text{ such that } \ldots \]

Never use the same session identifier twice.
Replicating S_2

Consider:

$$S_2 = O() := P$$

$$P = \ldots O_1(y : T) := \ldots \text{event } e(M) \ldots$$

$$\text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots$$

We replicate S_2:

$$S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O', T_{sid}, S_2)$$

$$= \text{foreach } \tilde{i} \leq \tilde{n} \text{ do } O'[\tilde{i}](x : T_{sid}) :=$$

$$\text{find } \tilde{u} = \tilde{i}' \leq \tilde{n} \text{ such that } \text{defined}(x[\tilde{i}'], x'[\tilde{i}'])$$

$$\land x = x[\tilde{i}'] \text{ then yield } \text{else }$$

$$\text{let } x' = \text{cst} \text{ in } \text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{sid}, P)$$

$$\text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{sid}, P) = \ldots O_1[\tilde{i}](y[\tilde{i}] : T) := \ldots \text{event } e(x, M) \ldots$$

$$\text{insert } T(x, M') \ldots \text{get } T(= x, z[\tilde{i}]) \text{ such that } \ldots$$
Replicating S_2: transfer of security properties

Theorem

Let $Q! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c', T_{\text{sid}}, Q)$ and $Q'! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c', T_{\text{sid}}, Q')$.

1. If Q and Q' do not contain events and $Q \approx^V Q'$, then $Q! \approx^V Q'!$.
2. If Q preserves the secrecy of y with public variables V, then so does $Q!$.
3. If Q satisfies $\text{event}(e_1(y)) \Rightarrow \text{event}(e_2(y))$ with public variables V, then $Q!$ satisfies $\text{event}(e_1(x, y)) \Rightarrow \text{event}(e_2(x, y))$ with public variables V.

(Add a variable session identifier at the beginning of each event.)
Main composition theorem

\[S_1: \quad S_{\text{composed}}: \]

\[\begin{align*}
S_1: & \quad \text{AddReplMsg} \\
& \quad \begin{array}{c}
\text{A} \\
\quad \downarrow k_A \\
\text{B} \\
\quad \downarrow k_B \\
\text{A} & \quad \text{B}
\end{array}
\]

\[S_{\text{composed}}: \\
\begin{array}{c}
\text{A} \\
\quad \downarrow k_A \\
\text{B} \\
\quad \downarrow k_B \\
\text{A} & \quad \text{B}
\end{array}
\]

\((S_1 \text{ may run several sessions of } A \text{ and } B.) \)
Main composition theorem

Theorem (S_1 and $S_2!$)

$$S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A}, \text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); \text{return}(M_B); Q_{1B}]$$

$$S_2 = O_2() := k \xleftarrow{R} T; \text{return}(); (Q_{2A} \mid Q_{2B})$$

$$S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2)$$

where

1. O'_2, k'_A, e_A, e_B do not occur elsewhere in $S_1, S_2!$;
2. S_1 and $S_2!$ have no common variable, oracle, event, table;
3. S_1 and $S_2!$ do not contain \texttt{newOracle} nor oracle calls;
4. and there is no \texttt{defined} condition in S_2.

Main composition theorem

C is a context with two holes, with replications \(\text{foreach } \tilde{i} \leq \tilde{n} \text{ do } \) above the first hole and \(\text{foreach } \tilde{i}' \leq \tilde{n}' \text{ do } \) above the second hole

\[
S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A}, \text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); \text{return}(M_B); Q_{1B}]
\]

\[
S_2 = O_2() := k \overset{R}{\leftarrow} T; \text{return}(); (Q_{2A} \mid Q_{2B})
\]

\[
S_{2!} = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2)
\]

where

1. \(O'_2, k'_A, e_A, e_B \) do not occur elsewhere in \(S_1, S_{2!} \);
2. \(S_1 \) and \(S_{2!} \) have no common variable, oracle, event, table;
3. \(S_1 \) and \(S_{2!} \) do not contain \textbf{newOracle} nor oracle calls;
4. and there is no \textbf{defined} condition in \(S_2 \).
Main composition theorem

Theorem (\(S_1\) and \(S_{2!}\))

\[
S_1 = C[\textbf{event } e_A(\text{sid}(\widetilde{msg}_A), k_A, \widetilde{i}); \textbf{let } k'_A = k_A \textbf{ in return}(M_A); Q_{1A},
\textbf{event } e_B(\text{sid}(\widetilde{msg}_B), k_B); \textbf{return}(M_B); Q_{1B}]
\]

\[
S_2 = O_2() := k \overset{R}{\leftarrow} T; \textbf{return}(); (Q_{2A} \mid Q_{2B})
\]

\[
S_{2!} = \text{AddReplSid}(\widetilde{i} \leq \widetilde{n}, O'_2, T_{sid}, S_2)
\]

where

1. \(O'_2, k'_A, e_A, e_B\) do not occur elsewhere in \(S_1, S_{2!}\);
2. \(S_1\) and \(S_{2!}\) have no common variable, oracle, event, table;
3. \(S_1\) and \(S_{2!}\) do not contain \textbf{newOracle} nor oracle calls;
4. and there is no \textbf{defined} condition in \(S_2\).
Main composition theorem

\[S_1 = C[\text{event } e_A(\text{sid}(\tilde{msg}_A), k_A, i); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A}, \]
\[\text{event } e_B(\text{sid}(\tilde{msg}_B), k_B); \text{return}(M_B); Q_{1B}] \]
\[S_2 = O_2() := k \xleftarrow{\text{R}} T; \text{return}(); (Q_{2A} \mid Q_{2B}) \]
\[S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2) \]

where

1. \(O'_2, k'_A, e_A, e_B \) do not occur elsewhere in \(S_1, S_2! \);
2. \(S_1 \) and \(S_2! \) have no common variable, oracle, event, table;
3. \(S_1 \) and \(S_2! \) do not contain \texttt{newOracle} nor oracle calls;
4. and there is no \texttt{defined} condition in \(S_2 \).

\textit{sid is a function that takes a sequence of messages and returns a session identifier of type } T_{\text{sid}}
Theorem \((S_1, S_2)\)

\[
S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A}, \text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); \text{return}(M_B); Q_{1B}]
\]

\[
S_2 = O_2() := k \xleftarrow{R} T; \text{return}(); (Q_{2A} \mid Q_{2B})
\]

\[
S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2)
\]

where
\begin{enumerate}
\item \(O'_2, k'_A, e_A, e_B\) do not occur elsewhere in \(S_1, S_2!\);
\item \(S_1 \text{ and } S_2!\) have no common variable, oracle, event, table;
\item \(S_1 \text{ and } S_2!\) do not contain \texttt{newOracle} nor oracle calls;
\item and there is no defined condition in \(S_2\).
\end{enumerate}
Main composition theorem

Theorem \((S_1 \equiv S_2)\)

\[
S_1 = C[\text{event } e_A(\text{sid}(\bar{m}_A), k_A, i); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A},
\text{event } e_B(\text{sid}(\bar{m}_B), k_B); \text{return}(M_B); Q_{1B}]
\]

\[
S_2 = O_2() := k \xleftarrow{R} T; \text{return}(); (Q_{2A} \mid Q_{2B})
\]

\[
S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2)
\]

where

1. \(O'_2, k'_A, e_A, e_B\) do not occur elsewhere in \(S_1, S_2!\);
2. \(S_1\) and \(S_2!\) have no common variable, oracle, event, table;
3. \(S_1\) and \(S_2!\) do not contain \texttt{newOracle} nor oracle calls;
4. and there is no \texttt{defined} condition in \(S_2\).

\(\bar{m}_B\) is a sequence of variables received or returned by \(C\) above the second hole.
Main composition theorem

Theorem (\(S_1\) and \(S_2!\))

\[
S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in return}(M_A); Q_{1A}, \text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); \text{return}(M_B); Q_{1B}]
\]

\[
S_2 = O_2() := k \xleftarrow{\text{R}} T; \text{return}(); (Q_{2A} \mid Q_{2B})
\]

\[
S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, O'_2, T_{\text{sid}}, S_2)
\]

where

1. \(O'_2, k'_A, e_A, e_B\) do not occur elsewhere in \(S_1, S_2!\);
2. \(S_1\) and \(S_2!\) have no common variable, oracle, event, table;
3. \(S_1\) and \(S_2!\) do not contain \texttt{newOracle} nor oracle calls;
4. and there is no defined condition in \(S_2\).
Main composition theorem

Theorem \((S_{\text{composed}}) \)

Let \(Q'_{2A} = \text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, Q_{2A}) \)
and \(Q'_{2B} = \text{AddIdxSid}(\tilde{i}' \leq \tilde{n}', x : T_{\text{sid}}, Q_{2B}) \).

Let

\[
S_{\text{composed}} = C[\text{event } e_A(\text{sid}(\sim\text{msg }_A), k_A, \tilde{i}); \text{return}(M_A); \\
(Q_{1A} \mid Q'_{2A}\{k_A/k, \text{sid}(\sim\text{msg }_A)/x\})], \\
\text{event } e_B(\text{sid}(\sim\text{msg }_B), k_B); \text{return}(M_B); \\
(Q_{1B} \mid Q'_{2B}\{k_B/k, \text{sid}(\sim\text{msg }_B)/x\})]
\]
Main composition theorem

Theorem (First conclusion)

If S_1 satisfies

- secrecy of k'_A with public variables $V \ (V \subseteq \text{var}(S_1) \setminus \{k_A, k'_A\})$,
- injective authentication of A to B:
 \[
 \text{inj-event}(e_B(sid, k)) \implies \text{inj-event}(e_A(sid, k, \tilde{i}))
 \]
 with public variables $V \cup \{k'_A\}$,
- single e_A for each session identifier:
 \[
 \text{event}(e_A(sid, k_1, \tilde{i}_1)) \land \text{event}(e_A(sid, k_2, \tilde{i}_2)) \implies \tilde{i}_1 = \tilde{i}_2
 \]
 with public variables $V \cup \{k'_A\}$,

then we can transfer security properties from $S_{2!}$ to S_{composed}.

Up to renumbering of variable indices,

S_{composed} with the events of S_1 removed

is indistinguishable with public variables $V \cup (\text{var}(S_2) \setminus \{k\})$

from an evaluation context interacting with $S_{2!}$.
Main composition theorem

Theorem (Second conclusion)

We can transfer security properties from S_1 to S_{composed}, provided they are proved with public variables k'_A, k_B.

S_{composed} is indistinguishable with public variables $\text{var}(S_{\text{composed}}) \setminus \{k'_A\}$ from an evaluation context interacting with S_1 with access to k'_A, k_B.
Further results in the paper

- **Exact security.**
- **New:** Shared hash oracles between the key exchange and the protocol that uses the key.
- **New:** Variant with non-injective authentication.
- **New:** Variant for modified ClientHello messages.

The paper was written using a syntax with channels instead of oracles, hence the theorems had to be adapted accordingly.
Transport Layer Security (TLS) 1.3
joint work with Karthikeyan Bhargavan and Nadim Kobeissi

- Next version of the most popular secure channel protocol.
 - Completely redesigned from TLS 1.2
 - Standardized after 28 drafts
Transport Layer Security (TLS) 1.3
joint work with Karthikeyan Bhargavan and Nadim Kobeissi

- Next version of the most popular secure channel protocol.
 - Completely redesigned from TLS 1.2
 - Standardized after 28 drafts

- Why did we need a new protocol?
 - Security: remove broken legacy crypto constructions
<table>
<thead>
<tr>
<th>Attack</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC4</td>
<td>Keystream biases</td>
<td>Mar’13</td>
</tr>
<tr>
<td>Lucky13</td>
<td>MAC-Encode-Encrypt CBC</td>
<td>Mar’13</td>
</tr>
<tr>
<td>POODLE</td>
<td>SSLv3 MAC-Encode-Encrypt CBC</td>
<td>Dec’14</td>
</tr>
<tr>
<td>FREAK</td>
<td>Export-grade 512-bit RSA</td>
<td>Mar’15</td>
</tr>
<tr>
<td>LOGJAM</td>
<td>Export-grade 512-bit DH</td>
<td>May’15</td>
</tr>
<tr>
<td>SLOTH</td>
<td>RSA-MD5 signatures</td>
<td>Jan’16</td>
</tr>
<tr>
<td>DROWN</td>
<td>SSLv2 PSA-PKCS#1v1.5 Enc</td>
<td>Mar’16</td>
</tr>
<tr>
<td>SWEET32</td>
<td>3DES Encryption</td>
<td>Oct’16</td>
</tr>
</tbody>
</table>
Transport Layer Security (TLS) 1.3

- **Next version of the most popular secure channel protocol.**
 - Completely redesigned from TLS 1.2
 - Standardized after 28 drafts

- **Why did we need a new protocol?**
 - **Security:** remove broken legacy crypto constructions
 - **Efficiency:** reduce handshake roundtrip latency
 - 0-RTT when the client and server have a pre-shared key
 - 0.5-RTT
Transport Layer Security (TLS) 1.3

- Next version of the most popular secure channel protocol.
 - Completely redesigned from TLS 1.2
 - Standardized after 28 drafts

- Why did we need a new protocol?
 - Security: remove broken legacy crypto constructions
 - Efficiency: reduce handshake roundtrip latency
 - 0-RTT when the client and server have a pre-shared key
 - 0.5-RTT
 - These are potentially contradictory goals

- Needs extensive security analysis before deployment!
 - The IETF called for academics to formally analyze the protocol drafts.
Summary of TLS 1.3

Client

<table>
<thead>
<tr>
<th>ClientHello</th>
<th>ServerHello</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ key_share*</td>
<td>+ key_share*</td>
</tr>
<tr>
<td>+ pre_shared_key*</td>
<td>{EncryptedExtensions}</td>
</tr>
<tr>
<td>(Application*)</td>
<td>{CertificateRequest*}</td>
</tr>
<tr>
<td></td>
<td>{Certificate*}</td>
</tr>
<tr>
<td></td>
<td>{CertificateVerify*}</td>
</tr>
<tr>
<td></td>
<td>{Finished}</td>
</tr>
<tr>
<td></td>
<td>[ApplicationData*]</td>
</tr>
</tbody>
</table>

Server

<table>
<thead>
<tr>
<th>HelloRetryRequest</th>
<th>+ important extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ key_share</td>
<td></td>
</tr>
</tbody>
</table>

* may be absent

Parentheses = encryption:
- () under key derived from client early traffic secret
- {} under key derived from handshake traffic secret
- [] under key derived from application traffic secret
Mechanized computational proof

- Mechanized verification of TLS 1.3 Draft-18 in the computational model.
 - + Handshake with PSK and/or DHE.
 - + Handshake with and without client authentication.
 - + 0-RTT and 0.5-RTT data, key updates.
 - - No post-handshake authentication.
 - - No version or ciphersuite negotiation: only strong algorithms.

- We prove security properties of the initial handshake, the handshake with pre-shared key, and the record protocol using CryptoVerif.

- We compose these pieces manually.
Structure of the proof

1. Computational assumptions
2. Lemmas on primitives
3. Protocol pieces
 - Handshake without pre-shared key
 - Handshake with pre-shared key (PSK and PSK-DHE)
 - Record protocol
4. Compose the pieces together
Structure of the proof: final composition

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

cats sats ems resumption_secret

cats sats ems cets

updated ts
Key schedule (Draft-18, excerpt)

PSK \rightarrow HKDF-Extract

Early Secrets

0

Derive-Secret(., “external psk binder key” | “resumption psk binder key”, “”)

$= binder_key$

Derive-Secret(., “client early traffic secret”, ClientHello)

$= client_early_traffic_secret (cets)$

(EC)DHE \rightarrow HKDF-Extract

Handshake Secret
Assumptions (1)

- **Diffie-Hellman:**
 - gap Diffie-Hellman (GDH)
 - needed in particular for 0.5-RTT
 - Diffie-Hellman group elements different from $0^{\text{len}_H()}$
 - avoids confusion between handshakes with and without Diffie-Hellman exchange.
 - Diffie-Hellman group elements different from $\text{len}_H() || "\text{TLS 1.3, } \| / \| h || 0x01$.
 - avoids collision between HKDF-Extract(es, e) and Derive-Secret($es, pbk, "\"") or Derive-Secret(es, ets_c, log_1).
 - independently discovered and discussed on the TLS mailing list.
 - change in Draft-19 makes this assumption unnecessary:
 add a Derive-Secret stage before HKDF-Extract.
Assumptions (2)

- **Signatures:** sign is UF-CMA.
- **Hash functions:** H is collision-resistant.
- **HMAC:**
 - $x \mapsto \text{HMAC-}H^{0_{\text{len}H}}(x)$ and $x \mapsto \text{HMAC-}H^{\text{kdf}_0}(x)$ are independent random oracles.
 - HMAC-H is a PRF, for keys different from $0^{\text{len}H}$ and kdf_0.
- **Authenticated Encryption:** IND-CPA and INT-CTXT provided the same nonce is never used twice with the same key.
Handshake without pre-shared key: model

- Model a honest client and a honest server.
- May interact with dishonest clients and servers included in the adversary.
- Ignore negotiation (RetryRequest).
- Give the handshake keys to adversary:
 - The adversary can encrypt and decrypt messages.
 - The security proof does not rely on that.
- Server always authenticated.
- With and without client authentication.
- The honest client and server may be dynamically compromised.
Handshake without pre-shared key: honest sessions

- The **client** is in a **honest session** if
 - the server public key is the one of the honest server, and
 - the honest server is not compromised, or it is compromised and the messages received by the client have been sent by the honest server.

- The **server** is in a **honest session** if
 - client authenticated:
 - the client public key is the one of honest client, and
 - the honest client is not compromised, or it is compromised and the messages received by the server have been sent by the honest client.
 - client not authenticated: the Diffie-Hellman share received by the server has been sent by the honest client.
Handshake without pre-shared key: security (1)

- Mutual injective key authentication:
 - If the honest client terminates a honest session, then the honest server has accepted a session with that client, and they agree on:
 - keys $cats$, $sats$, and ems,
 - all messages until the server $Finished$ message.
 - If the honest server terminates a honest session, then the honest client has accepted a session with that server, and they agree on the keys and on all messages.

 The previous properties are injective.

- Key secrecy: the keys
 - $cats$, ems, psk' client side, when the client terminates a honest session;
 - $sats$ server side, when the server sends its $Finished$ message and the received Diffie-Hellman share comes from the client (for 0.5-RTT) are indistinguishable from independent fresh random values.
Handshake without pre-shared key: security (2)

- **Unique accept event for each session identifier.**
 - The server never accepts twice with the honest client and the same messages until the server Finished message.
 - The client never accepts twice with the honest server and the same messages until the client Finished message.

- **Unique channel identifier:**
 - \(psk' \) or \(H(log_7) \):
 If a client session and a server session have the same \(psk' \) or \(H(log_7) \), then all their parameters are equal (collision-resistance).
 - \(ems \):
 If a client session and a server session have the same \(ems \), then they have the same \(log_4 \) (collision-resistance), so all their parameters are equal (CryptoVerif).
Handshake without pre-shared key: guidance

- Signature under sk_S.
- Introduce tests to distinguish cases, depending on
 - whether the Diffie-Hellman share received by the server is a share $g^{x'}$ from the client,
 - and whether the Diffie-Hellman share received by the client is the share g^y generated by the server upon receipt of $g^{x'}$.
- Random oracle assumption on $x \mapsto \text{HMAC-H}^{kd_f_0}(x)$.
- Replace variables that contain $g^{x'y}$ with their values to make equality tests $m = g^{x'y}$ appear.
- Gap Diffie-Hellman assumption.
- \Rightarrow the handshake secret hs is a fresh random value.
- Lemmas on key schedule \Rightarrow other keys are fresh random values.
- MAC.
- Signature under sk_C.
Handshake with pre-shared key: model

- Includes handshakes with and without Diffie-Hellman exchange.
- Includes 0-RTT.
- Ignore the ticket $\text{enc}^{k_t}(\text{psk})$; consider a honest client and a honest server that share the PSK.
- Give the handshake keys to adversary (as before).
- Certificates optional, since the client and server are already authenticated by the PSK.
Handshake with pre-shared key: security (1)

Same properties as for the initial handshake, but

- Additionally, we prove forward secrecy wrt. to the compromise of PSK for PSK-DHE (requires CryptoVerif 2.02).

- **Weaker properties for 0-RTT:**
 - **Key authentication:** No authentication for cets:
 - several binders, and only one of them is checked;
 - the adversary can alter the others, yielding a different cets server-side.
 - **Replay prevention:** No replay protection for cets.
 - **Secrecy of keys:** The keys cets server-side are not independent of each other, due to the replay.
Handshake with pre-shared key: security (2)

For 0-RTT, we show:

- **Client-side**: The keys $cets$ are *secret*: indistinguishable from independent random values.
- **Server-side**:
 - If the received ClientHello message has been sent by the client, then have *non-injective authentication of client to server*: this session matches a session of the client with same key $cets$.
 - Otherwise,
 - If the ClientHello message has been received before, then the key $cets$ computed by the server is the same as in the previous session with the same ClientHello message.
 - Otherwise, the key $cets$ computed by the server is indistinguishable from a fresh random value, independent from other keys.
Security of the record protocol

The client and the server share a fresh random traffic secret.

- **Key secrecy**: The updated traffic secret is secret.
- **Message secrecy**: When the adversary provides two sets of plaintexts m_i and m'_i of the same padded length, it is unable to determine which set is encrypted, even when the updated traffic secret is leaked.
- **Injective message authentication**: Every time a message m is decrypted by the receiver with a counter c, the message m has been encrypted and sent by an honest sender with the same counter c.
Composition

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

\textit{cats, sats, ems, resumption_secret, cets, updated ts}
Conclusion

- Composition theorems for **CryptoVerif**
 - computational
 - easy to apply when the protocol pieces are proved secure in **CryptoVerif**
 - flexible: hash oracles, injective and non-injective authentication

- Application to **TLS 1.3**
 - important protocol
 - would be out of scope of **CryptoVerif** without composition because of loops

- Applicable to other protocols
Future directions

- Composition theorems could be proved for other tools, such as EasyCrypt.
- We could automate the verification of the assumptions of our theorems and the computation of the composed protocol.
 - Automating the TLS case study would be more difficult (recursive composition).
- We could consider composition with a key exchange protocol that already uses the key.