Examination of the module MPRI 2-30
Cryptographic protocols: formal and computational proofs

(Solution)

March 2, 2016

2 CryptoVerif

2.1 Exercise 1

(1) \(X \| Y = f_{sk}^{-1}(c), r = H(X) \oplus Y, m\|0 = X \oplus G(r) \). One can check that the last \(k_1 \) bits of \(X \oplus G(r) \) are 0.

(2) declare the type \texttt{large}

(3) type \texttt{Dr} has size \(k_0 \), type \texttt{Dow} has size \(n - k_0 \), type \texttt{Dm} has size \(n - k_0 - k_1 \).

\[\begin{align*}
\text{let} & \text{ hashoracleG(hkg: hashkey)} = \text{foreach } i \leq qG \text{ do } \text{OG(x:Dr)} := \text{return}(G(hkg,x)). \\
\text{let} & \text{ hashoracleH(hkh: hashkey)} = \text{foreach } i \leq qH \text{ do } \text{OH(x:Dow)} := \text{return}(H(hkh,x)). \\
\text{let} & \text{ processT(hkg: hashkey, hkh: hashkey, pk: pkey)} = \\
& \quad \text{OT(m1: Dm, m2: Dm)} := \\
& \quad b_1 \leftarrow \text{R bool}; \\
& \quad (* \text{ The next line is equivalent to an "if" that will not be expanded. This is necessary for the system to succeed in proving the protocol. } *) \\
& \quad \text{let} \text{ menc = test(b1, m1, m2) in } \\
& \quad r \leftarrow \text{R Dr}; \\
& \quad \text{let} \text{ s = xorDow(concatm(menc, zero), G(hkg,r)) in } \\
& \quad \text{let} \text{ t = xorDr(r, H(hkh,s)) in } \\
& \quad \text{return}(f(pk, concat(s,t))). \\
\end{align*} \]

process

\[\begin{align*}
\text{Ostart()} := \\
\text{hkh \leftarrow \text{R hashkey};} \\
\text{hkg \leftarrow \text{R hashkey};} \\
\text{r \leftarrow \text{R seed};} \\
\text{let} \text{ pk = pkgen(r) in } \\
\text{let} \text{ sk = skgen(r) in } \\
\text{return}(pk); \\
\text{(run hashoracleG(hkg) \mid run hashoracleH(hkh) \mid run processT(hkg, hkh, pk))}
\end{align*} \]

(4) Random oracle of \(H \) and \(G \) can be applied directly. The property of \(\oplus \) cannot (even after syntactic transformation) because \(r \) is used in \(G(r) \). One-wayness cannot (even after syntactic transformation) because the argument of \(f \) is not random.
Applying the random oracle assumption replaces $G(r)$ with a fresh random value r', which allows applying the assumption of \oplus twice. (Actually, in the hash oracles, we need to introduce events using Shoup lemma to avoid leaking r.) After that, the argument of f is random, so one-wayness can be applied (after replacing pk with its value and removing the assignment to sk).

(5) We need to add a decryption oracle:

```plaintext
let processD(hkg: hashkey, hkh: hashkey, sk: skey) =
  foreach iD <= qD do
    OD(c: D) :=
      find suchthat defined(cT) && c = cT then yield else
      let concat(s,t) = invf(sk, c) in
      let r = xorDr(t, H(hkh, s)) in
      let mz = xorDow(s, G(hkg, r)) in
      let concatm(m, =zero) = mz in
      return(m).
run processD(hkg, hkh, sk) is added to the final parallel composition, and the last line of processT is replaced with

  let cT: D = f(pk, concat(s,t)) in
  return(cT).
```

so that cT is defined.

2.2 Exercise 2

(1) let processA(pkA: spkey, skA: sskey, pkB: pkey) =

```plaintext
OA1(pkX: pkey) :=
  k <-R key;
  (* The signature and encryption are probabilistic, CryptoVerif
     adds the random number generation internally, but you may
     also write it explicitly, e.g.:
     r <-R sseed;
     sign(k, skA, r) *)
  let payload = concat(pkA, k, sign(k, skA)) in
  return(penc(payload, pkX));
(* Test for secrecy *)
OA2() :=
  if pkX = pkB then
    let k': key = k in
    yield.
```

let processB(skB: skey, pkA: spkey) =

```plaintext
OB(m:bitstring) :=
  let pinjbot(concat(pkY, kB, s)) = pdec(m, skB) in
  if check(kB, pkY, s) then
    (* Test for secrecy *)
    if pkY = pkA then
      let k'' : key = kB in
      yield.
```
process

Ostart() :=
 rkA <- R skeyseed;
 let pkA = spkgen(rkA) in
 let skA = sshgen(rkA) in
 rkB <- R pkeyseed;
 let pkB = pkgen(rkB) in
 let skB = skgen(rkB) in
 return(pkA, pkB);

 ((foreach iA <= NA do run processA(pkA, skA, pkB)) |
 (foreach iB <= NB do run processB(skB, pkA)))

(2) The key k that A has is secret, but the key that B has is not secret. The attack is the well-known attack against the Denning-Sacco protocol (similar to the one against Needham-Schroeder public key):

\[
A \to I : E_{pkI}(pk_A, k, S_{skA}(k))
\]
\[
I(A) \to B : E_{pkB}(pk_A, k, S_{skA}(k))
\]

A starts a session with the attacker I, which forwards the message to B after reencrypting it under pk_B. The fix consists in adding the public key of B in the signature.