FORMACRYPT

Monday, March 6th, 2006
New Goals
from the Cryptographers' Point of View

David Pointcheval

Ecole normale supérieure France

Optimality

- Refine reduction cost
- Provide the **best** reduction
 - By exhaustive search?
 - With heuristics?

Diffie-Hellman Problems

- Deal with the Diffie-Hellman Problems
- A direction:
 - Trapdoor Hard-to-Invert Group Isomorphisms

Let I be a set of indices. Informally a family of trapdoor hard-to-invert group isomorphisms is a family $F = \{f_m : X_m \to Y_m\}_{m \in I}$ satisfying the following conditions:

- 1. one can easily generate an index m, which provides a description of the function f_m a morphism –, its domain X_m and range Y_m (which are assumed to be isomorphic, efficiently uniformly samplable finite groups), and a trapdoor t_m ;
- 2. for a given m, one can efficiently sample pairs $(x, f_m(x))$, with x uniformly distributed in X_m ;
- 3. for a given m, one can efficiently decide Y_m , meaning with this that on input m and a candidate value y one can efficiently test if $y \in Y_m$ or not¹.
- 4. given the trapdoor t_m , one can efficiently invert $f_m(x)$, and thus recover x;
- 5. without the trapdoor, inverting f_m is hard.

THtIG: Homomorphisms

- 1 There exist a polynomial p and a probabilistic polynomial time Turing Machine Gen which on input 1^k (where k is a security parameter) outputs pairs (m, t_m) where m is uniformly distributed in $I \cap \{0, 1\}^k$ and $|t_m| < p(k)$. The index m contains the description of X_m and Y_m , which are isomorphic groups, an isomorphism f_m from X_m onto Y_m and a set R_m of uniformly and efficiently samplable values, which will be used to sample $(x, f_m(x))$ pairs. The information t_m is referred as the trapdoor.
- 2.1 There exists a polynomial time Turing Machine Sample^x which on input $m \in I$ and $r \in R_m$ outputs $x \in X_m$. Furthermore, for any m, the machine Sample^x (m, \cdot) implements a bijection from R_m onto X_m^2 .
- 2.2 There exists a polynomial time Turing Machine Sample^y, which on input $m \in I$ and $r \in R_m$ outputs $f_m(x)$ for $x = \mathsf{Sample}^x(m,r)$. Therefore, $\mathsf{Sample}^y(m,r) = f_m(\mathsf{Sample}^x(m,r))$.
 - 3 There exists a polynomial time Turing Machine Check^y which, on input $m \in I$ and any y, answers whether $y \in Y_m$ or not.
 - 4 There exists a (deterministic) polynomial time Turing Machine Inv such that, for all $m \in I$ and for all $x \in X_m$, $Inv(m, t_m, f_m(x)) = x$.
 - 5 For every probabilistic polynomial time Turing Machine \mathcal{A} we have that, for large enough k,

$$\Pr[(m, t_m) \leftarrow \mathsf{Gen}(1^k); x \stackrel{R}{\leftarrow} X_m; y = f_m(x) : \mathcal{A}(m, y) = x] \le \varepsilon(k),$$

where $\varepsilon(\cdot)$ is a negligible function.

Universal Composability

 Provide proofs in the Universal Composability framework

Gain

- Exhibit de gain of this direct method: Provide an example of protocol
 - We can prove under standard assumptions
 - Which requires stronger assumptions with other approaches