
ProVerif

Automatic Cryptographic Protocol Verifier

User Manual for Untyped Inputs

Bruno Blanchet∗

École Normale Supérieure, CNRS, INRIA, Paris, France

October 1, 2012

Warning! This manual documents the untyped inputs of ProVerif (untyped Horn clauses, untyped
pi calculus). These input formats are no longer actively developed. We recommend coding your protocols
in the typed pi calculus format, described in the file manual.pdf.

1 Introduction

This manual describes the untyped input syntax and output of ProVerif. It does not describe the internal
algorithms used in the system. These algorithms have been described in various research papers [6, 2, 7,
1, 3, 4, 8, 10, 5, 9], that can be downloaded on

http://www.di.ens.fr/~blanchet/publications/index.html.
The tool can take two formats as input. The first one is in the form of Horn clauses (logic programming

rules), and corresponds to the system described in [6]. The second one is in the form of a process in an
extension of the pi calculus, described in [2]. In both cases, the output of the system is essentially the
same.

2 Common remarks on the syntax

Comments can be included in input files. Comments are surrounded by (* and *). Nested comments
are not supported.

Identifiers begin with a letter (uppercase or lowercase) and contain any number of letters, digits, the
underscore character (), the quote character (’), as well as accented letters of the ISO Latin 1 character
set. Case is significant. Each input system has a number of keywords that cannot be used as ordinary
identifiers.

In case of syntax error, the system indicates the character position of the error (line and column
numbers). Please use your text editor to find the position of the error. (The error messages can be
interpreted by emacs.)

3 Command-line options

The syntax of the command-line is

./proverif 〈options〉 〈filename〉

where the 〈options〉 can be

∗This work was partly done while the author was at INRIA Rocquencourt and at Max-Planck-Institut für Informatik,

Saarbrücken.

1

• -in 〈format〉

Choose the input format (horn, horntype, pi, pitype). When the -in option is absent, the input
format is chosen according to the file extension, as detailed below. The recommended input format
is the typed pi calculus, which corresponds to the option -in pitype, and is the default when
the file extension is .pv. It is described in manual.pdf. The other formats are no longer actively
developed. Input may also be provided using the untyped pi calculus (option -in pi, the default
when the file extension is .pi), typed Horn clauses (option -in horntype, the default when the
file extension is .horntype), and untyped Horn clauses (option -in horn, the default for all other
file extensions). This manual documents the untyped Horn clauses and the untyped pi calculus
input formats.

• -out 〈format〉

Choose the output format, either solve (analyze the protocol) or spass (stop the analysis before
resolution, and output the clauses in the format required for use in the Spass first-order theorem
prover, see http://www.spass-prover.org/). The default is solve. When you select -out spass,
you must add the option -o 〈filename〉 to specify the file in which the clauses will be output.

• -TulaFale 〈version〉

For compatibility with the web service analysis tool TulaFale (see the tool download at http:

//research.microsoft.com/projects/samoa/). The version number is the version of TulaFale
with which you would like compatibility. Currently, only version 1 is supported.

• -color

Display a colored output on terminals that support ANSI color codes. (Will result in a garbage
output on terminals that do not support these codes.) Unix terminals typically support ANSI color
codes. For emacs users, you can run ProVerif in a shell buffer with ANSI color codes as follows:

– start a shell with M-x shell

– load the ansi-color library with M-x load-library RET ansi-color RET

– activate ANSI colors with M-x ansi-color-for-comint-mode-on

– now run ProVerif in the shell buffer.

You can also activate ANSI colors in shell buffers by default by adding the following to your .emacs:

(autoload ’ansi-color-for-comint-mode-on "ansi-color" nil t)

(add-hook ’shell-mode-hook ’ansi-color-for-comint-mode-on)

• -help or --help

Display a short summary of command-line options.

4 Input as Horn clauses

By default, the executable program proverif takes Horn clauses as input. You can run it as follows:

./proverif 〈filename〉

where 〈filename〉 references a file containing the Horn clauses, in the format explained below. The system
then basically determines whether a fact can be derived from the clauses. If true, a proof is given. As
shown in [6], this can be used to determine secrecy properties of protocols: if a certain fact cannot be
derived from the clauses, then the secrecy of a certain value is preserved. A difference with first-order
theorem provers that perform a similar task, is that correctness and completeness are reversed. Here,
correctness means that if a value is not secret, the system says so, that is, if a fact is derivable, the system
says so. Completeness means that if a fact is not derivable, then the system says so. We sometimes drop
completeness (that is, we lose precision; see options below), but never correctness.

2

〈clause〉 ::= [(〈fact〉 &)∗〈fact〉 ->] 〈fact〉

| (〈fact〉 &)∗〈fact〉 <-> 〈fact〉

| (〈fact〉 &)∗〈fact〉 <=> 〈fact〉

〈fact〉 ::= 〈ident〉:seq〈term〉

| 〈term〉 <> 〈term〉

〈term〉 ::= 〈ident〉(seq〈term〉)

| 〈ident〉[seq〈term〉]

| (seq〈term〉)

| 〈ident〉

〈factformat〉 ::= 〈ident〉:seq〈termformat〉

〈termformat〉 ::= 〈ident〉(seq〈termformat〉)

| 〈ident〉[seq〈termformat〉]

| (seq〈termformat〉)

| 〈ident〉

| *〈ident〉

where seq〈X〉 is a sequence of X: seq〈X〉 = [(〈X〉,)∗〈X〉] = 〈X〉, . . . ,〈X〉. (The sequence can be empty,
it can be one element 〈X〉, or it can be several elements 〈X〉 separated by commas.)

Figure 1: Grammar of facts and clauses

The keywords of this input system are data, elimtrue, equation, fun, not, nounif, param, pred,
query, and reduc.

The input file consists of a list of declarations, followed by the keyword reduc and a list of clauses:

〈declaration〉∗ reduc (〈clause〉;)∗ 〈clause〉.

The syntax of facts and clauses is given in Figure 1. In this grammar X∗ means any number of repetitions
of X, [X] means X or nothing. Text in typewriter style should appear as it is in the input file. Text
between 〈 and 〉 represents non-terminals.

Declarations can be any of the following:

• param 〈name〉 = 〈value〉.

This declaration sets the value of configuration parameters. The following cases are supported:

– param verboseRules = false.

param verboseRules = true.

Display the number of clauses every 200 clause created during the solving process (false) or
display each clause created during the solving process (true).

– param verboseRedundant = false.

param verboseRedundant = true.

Display eliminated redundant clauses when true.

– param verboseCompleted = false.

param verboseCompleted = true.

Display completed set of clauses after saturation when true.

– param verboseEq = true.

param verboseEq = false.

Display information on handling of equational theories when true.

3

– param verboseTerm = true.

param verboseTerm = false.

Display information on termination when true (changes in the selection function to improve
termination; termination warnings).

– param maxDepth = none.

param maxDepth = n.

Do not limit the depth of terms (none) or limit the depth of terms to n, where n is an integer.
A negative value means no limit. When the depth is limited to n, all terms of depth greater
than n are replaced with new variables. Limiting the depth can be used to enforce termination
of the solving process at the cost of precision.

– param maxHyp = none.

param maxHyp = n.

Do not limit the number of hypotheses of clauses (none) or limit it to n, where n is an
integer. A negative value means no limit. When the number of hypotheses is limited to n,
arbitrary hypotheses are removed from clauses, so that only n hypotheses remain. Limiting
the number of hypotheses can be used to enforce termination of the solving process at the
cost of precision (although in general limiting the depth by the above declaration is enough
to obtain termination).

– param selFun = TermMaxsize.

param selFun = Term.

param selFun = NounifsetMaxsize.

param selFun = Nounifset.

Chooses the selection function that governs the resolution process. All selection functions
avoid unifying on facts indicated by a nounif declaration. Nounifset does exactly that.
Term automatically avoids some other unifications, to help termination, as determined by
some heuristics. NounifsetMaxsize and TermMaxsize choose the fact of maximum size when
there are several possibilities. This choice sometimes gives impressive speedups.

– param stopTerm = true.

param stopTerm = false.

Display a warning and wait for user answer when the system thinks the solving process will
not terminate (true), or go on as if nothing had happened (false). This setting applies only
to the selection functions NounifsetMaxsize and Nounifset. (See parameter selFun.)

– param redundancyElim = simple.

param redundancyElim = no.

param redundancyElim = best.

An elimination of redundant clauses has been implemented: when a clause without selected
hypotheses is derivable from other clauses without selected hypothesis, it is removed. With
redundancyElim = simple, this is applied for newly generated clauses. With redundancyElim
= no, this is never applied. With redundancyElim = best, this is also applied when an old
clause can be derived from other old clauses plus the new clause.

– param redundantHypElim = beginOnly.

param redundantHypElim = false.

param redundantHypElim = true.

When a clause is of the form H ∧H ′ → C, and there exists σ such that σH ⊆ H ′ and σ does
not change the variables of H ′ and C, then the clause can be replaced with H ′ → C (since
there are implications in both directions between these clauses).

This replacement is done when redundantHypElim = true., or when redundantHypElim =

beginOnly. and H contains a begin event. Indeed, testing this property takes time, and
slows down small examples. On the other hand, on big examples, in particular when they
contain several begin events (or blocking facts), this technique can yield huge speedups.

– param reconstructDerivation = true.

param reconstructDerivation = false.

4

When a fact is derivable, should we reconstruct the corresponding derivation? (This setting
has been introduced because in some extreme cases reconstructing a derivation can consume
a lot of memory.)

– param simplifyDerivation = true.

param simplifyDerivation = false.

Should the derivation be simplified by removing duplicate proofs of the same attacker facts?

– param abbreviateDerivation = true.

param abbreviateDerivation = false.

When abbreviateDerivation = true, ProVerif defines symbols to abbreviate terms that
represent names a[. . .] before displaying the derivation, and uses these abbreviations in the
derivation. These abbreviations generally make reading the derivation easier by reducing the
size of terms.

– param displayDerivation = true.

param displayDerivation = false.

Should the derivation be displayed? Disabling derivation display is useful for very big deriva-
tions.

In the above list, the default value is the first mentioned. The system also accepts no instead of
false and yes instead of true.

• fun 〈ident〉/n.

Declares a function symbol 〈ident〉 of arity n.

• data 〈ident〉/n.

data f/n. declares a data function symbol f of arity n. Data function symbols are similar to tu-
ples: the adversary can construct and decompose them. The system implicitly adds the equivalence
p : f(x1, . . . , xn) ⇔ p : x1 ∧ . . . ∧ p : xn for each predicate p declared decompData.

• equation 〈term〉 = 〈term〉.

equation M1 = M2 says that the terms M1 and M2 are in fact equal. The function symbols in the
equation should be only already declared constructors. The treatment of equations is still rather
limited. The equation f(x, g(y)) = f(y, g(x)), used for Diffie-Hellman key agreements, is known to
work. The system may not terminate when more complex equations are entered. In the presence
of both equations and inequality constraints, the system is not complete (but still correct): the
inequality constraints are deemed true when the terms are syntactically different, without taking
into account the equations.

• query 〈fact〉.

Indicates that the system should determine whether 〈fact〉 is true or not. If 〈fact〉 contains variables,
determine which instances of 〈fact〉 are true.

• nounif 〈factformat〉[/n].

Modifies the selection of facts to be resolved upon, to avoid resolving facts that match 〈factformat〉.
For a fact 〈fact〉 to match 〈factformat〉, 〈fact〉 must contain a variable when 〈factformat〉 contains
one, and any term when 〈factformat〉 contains * followed by a variable name. The optional integer
n indicates how much we should avoid resolution on facts that match 〈factformat〉: the greater n,
the more such resolutions will be avoided.

• pred 〈ident〉/n seq〈ident〉.

pred p/n i1, . . . , in. declares a new predicate p, of arity n, with special properties described by
i1, . . . , in.

The following properties are allowed for i1, . . . , in:

5

– block: Declares the predicate p as a blocking predicate. Blocking predicates may appear in
hypotheses or conclusions of clauses, but not both for the same predicate.

When they appear in hypotheses, instead of trying to prove facts containing these predicates
(which is impossible since no clause implies such facts), the system collects hypotheses con-
taining the blocking predicates necessary to prove the queries. This is useful in particular to
prove authenticity [7].

When they appear in conclusions, the system makes sure to really know whether the fact C
in question is derivable, and does not return clauses H -> C for which it is not clear whether
H is derivable or not.

– elimVarStrict: Tells the system to that p:new name[i], . . . , new name[i] holds. Then
ProVerif removes the hypothesis p:x1, . . . , xn where x1, . . . , xn are variables that do not ap-
pear elsewhere in a clause.

– elimVar: Tells the system to that p:new name[i], . . . , new name[i] holds. Then ProVerif re-
moves the hypothesis p:x1, . . . , xn where x1, . . . , xn are variables that do not appear elsewhere
in a clause, except possibly in inequality facts. Removing such hypotheses attacker:x is com-
plete for proving secrecy or authenticity, because there always exists a value of x that makes
true both the inequality facts, and attacker:x. In general, however, removing p:x1, . . . , xn

where x1, . . . , xn may appear in inequalities leads to a sound approximation. (When it is
important that no underivable facts are considered derivable, the transformation is applied
only when x1, . . . , xn do not appear elsewhere in the clause, as for elimVarStrict.)

– decompData: Adds the following clauses, where p is a predicate of arity m and f is any
function symbol of arity n declared data or a tuple function.

p:f(x11, . . . ,x1n), . . . ,f(xm1, . . . ,xmn) -> p:x1i, . . . ,xmi

p:x11, . . . ,xm1 & . . . & p:x1n, . . . ,xmn ->

p:f(x11, . . . ,x1n), . . . ,f(xm1, . . . ,xmn)

For example, when p is a unary predicate and f is a tuple function, we add:

p:(x1, . . . ,xn) -> p:xi

p:x1 & . . . & p:xn -> p:(x1, . . . ,xn)

for all n and i ∈ {1, . . . , n}. These clauses are treated in a specially optimized way, since they
are used in most protocols.

– decompDataSelect: same as decompData, but allows the selection of facts p:x1, . . . , xn while
decompData does not. (It is in general better not to select such facts, because it leads to
non-termination in the presence of data decomposition clauses; there are however exceptions
for some rare cases.)

– memberOptim: This must be used only when p is defined by

p : x, f(x, y);

p : x, y -> p : x, f(x′, y).

where f is a data constructor. It turns on the following optimization: p′ : x∧p : M1, x∧. . .∧p :
Mn, x where p′ is declared decompData and p is declared memberOptim is replaced with p′ :
x∧p′ : M1∧ . . .∧p′ : Mn when x does not occur elsewhere (just take x = f(M1, . . . f(Mn, x

′))
and notice that p′ : x if and only if p′ : M1, . . . , p

′ : Mn, and p′ : x′), or when the clause has
no selected hypothesis. In the last case, this introduces an approximation.

The replacement is also possible when x occurs in several predicates declared decompData.
However, when x occurs in several memberOptim predicates, the transformation may introduce
an approximation. (For example, consider p1 and p2 defined as above respectively using f1
and f2 as data constructors. Then p1 : M,x ∧ p2 : M ′, x is never true: for it to be true, x
should be at the same time f1(,) and f2(,).)

6

• elimtrue 〈fact〉.

The declaration elimtrue F means that σF is true for all σ; the fact F is added to the set of
clauses.

Then in a clause R = F ′ & H -> C, if F ′ unifies with F with most general unifier σu and all
variables of F ′ modified by σu do not occur in the rest of R then the hypothesis F ′ can be removed:
R is transformed into H -> C, by resolving with F .

• not 〈fact〉.

Adds a secrecy assumption, saying that 〈fact〉 cannot be proved from the clauses. Then the system
can remove all clauses that contain fact in their hypotheses. (These clauses can never be applied.)
This speeds up the system. At the end of the solving process, the system checks that 〈fact〉 can
indeed not be derived from the clauses. If it can be derived, the proof fails with an error message.

Two kinds of functions may appear in terms: constructors and names. Constructors are followed by their
parameters between parentheses: f(M1, . . . ,Mn). A constructor without parameter can be written f()
or simply f . Constructors must be declared with fun f/n., as mentioned in the declarations. Names are
followed by their parameters between brackets: a[M1, . . . ,Mn]. A name without parameter must be
written a[]. Names are not declared before being used. At first, constructors were designed to represent
cryptographic primitives, and names to represent fresh names created by the protocol. However, there is
no difference between names and constructors from the point of view of the solver. We advise you to use
constructors rather than names, since the declaration of constructors is a guarantee against typesetting
errors.

So terms M can be either constructor applications f(M1, . . . ,Mn), name applications a[M1, . . . ,
Mn], tuples (M1, . . . ,Mn), or identifiers x that can be used for variables or constructors without
parameters. Note that the term (M) is different from M : (M) is a tuple with a single component
containing M .

Facts can be the application of a predicate to terms p:M1, . . . ,Mn. (This is written this way and
not p(M1, . . . ,Mn) only for historical reasons.) They can also be M<>M ′, meaning M is different from
M ′. Inequalities are allowed only in hypotheses of clauses, not in conclusions, queries query 〈fact〉.,
and secrecy assumptions not 〈fact〉..

Clauses can be F1 & . . . & Fn -> F , meaning F1 and . . . and Fn implies F . They can also be simply
F , meaning that F is true, without any hypothesis.

They can also be F1 & . . . & Fn <-> F , meaning F1 and . . . and Fn is equivalent to F . This is
allowed only when Fi do not contain inequality constraints, σFi is smaller than σF for all σ, and no two
facts F of different equivalence declarations unify. It then generates the clauses F1 & . . . & Fn -> F ,
F -> Fi, and furthermore enables the replacement of σF with σF1 & . . . & σFn in all clauses.

The declaration F1 & . . . & Fn <=> F is a synonym for F1 & . . . & Fn <-> F , but it further
prevents the selection of facts that unify with F .

The goal of the system is to determine whether the facts declared in queries can be derived from the
given clauses.

5 Input as process in extension of the pi calculus

To give a pi calculus process as input to ProVerif, you have to add the command line option -in pi, or
to use a filename that ends with .pi. You can then run ProVerif by:

./proverif -in pi 〈filename〉

where 〈filename〉 references a file containing the process, in the format explained below.
The keywords of this input system are among, and, choice, clauses, data, elimtrue, else, equation,

event, free, fun, if, in, let, new, noninterf, not, nounif, out, param, phase, putbegin, pred,
private, process, query, reduc, suchthat, then, and weaksecret.

The input file consists of a list of declarations, followed by the keyword process and a process:

〈declaration〉∗ process 〈process〉

7

〈term〉 ::= 〈ident〉(seq〈term〉)

| (seq〈term〉)

| 〈ident〉

| choice[〈term〉,〈term〉]

〈pattern〉 ::= 〈ident〉

| (seq〈pattern〉)

| 〈ident〉(seq〈pattern〉)

| =〈term〉

〈clause〉 ::= [(〈fact〉 &)∗〈fact〉 ->] 〈fact〉

| (〈fact〉 &)∗〈fact〉 <-> 〈fact〉

| (〈fact〉 &)∗〈fact〉 <=> 〈fact〉

〈fact〉 ::= 〈ident〉:seq〈term〉

| 〈term〉 <> 〈term〉

| 〈term〉 = 〈term〉

〈process〉 ::= (〈process〉)

| 〈ident〉

| ! 〈process〉

| 0

| new 〈ident〉; 〈process〉

| if 〈fact〉 then 〈process〉 [else 〈process〉]

| in(〈term〉, 〈pattern〉)[; 〈process〉]

| out(〈term〉, 〈term〉)[; 〈process〉]

| let 〈pattern〉 = 〈term〉 in 〈process〉 [else 〈process〉]

| let seq〈ident〉 suchthat 〈fact〉 in 〈process〉 [else 〈process〉]

| 〈process〉 | 〈process〉

| event 〈term〉 [; 〈process〉]

| phase n [; 〈process〉]

Figure 2: Grammar of processes

8

〈gterm〉 ::= 〈ident〉(seq〈gterm〉)

| 〈ident〉[seq〈gbinding〉]

| (seq〈gterm〉)

| 〈ident〉

〈gbinding〉 ::= !n = 〈gterm〉

| 〈ident〉 = 〈gterm〉

〈gfact〉 ::= 〈ident〉:seq〈gterm〉 [phase n]

| 〈gterm〉 <> 〈gterm〉

| 〈gterm〉 = 〈gterm〉

〈realquery〉 ::= 〈gfact〉 ==> 〈hyp〉

〈hyp〉 ::= 〈hyp〉 | 〈hyp〉

| 〈hyp〉 & 〈hyp〉

| 〈gfact〉

| (〈hyp〉)

| (〈realquery〉)

〈query〉 ::= putbegin ev:seq〈ident〉[; 〈query〉]

| putbegin evinj:seq〈ident〉[; 〈query〉]

| let 〈ident〉 = 〈gterm〉[; 〈query〉]

| 〈gfact〉[; 〈query〉]

| 〈realquery〉[; 〈query〉]

〈gtermformat〉 ::= same as 〈gterm〉 with additional *〈ident〉

〈gfactformat〉 ::= 〈ident〉:seq〈gtermformat〉 [phase n]

Figure 3: Grammar of queries and nounif

9

The syntax of terms and processes is given in Figures 2 and 3, using the same conventions as in Section 4.
Declarations can be any of the following:

• param 〈name〉 = 〈value〉.

This declaration sets the value of configuration parameters. The cases mentioned in Section 4 are
supported, as well as the following ones:

– param attacker = active.

param attacker = passive.

Indicates whether the attacker is active (param attacker = active.) or passive (param
attacker = passive.). An active attacker can read messages, compute, and send messages.
A passive attacker can read messages and compute but not send messages.

– param keyCompromise = none.

param keyCompromise = approx.

param keyCompromise = strict.

By default (param keyCompromise = none.), it is assumed that session keys are not a priori
compromised. Otherwise, it is assumed that some session keys are compromised (known by
the adversary). Then the system determines whether the secrets of other sessions can be
obtained by the adversary. In this case, the names that occur in queries always refer to names
of non-compromised sessions (the attacker has all names of compromised sessions), and the
events that occur before an arrow ==> in a query are executed only in non-compromised
sessions. With param keyCompromise = approx., the compromised sessions are considered
as executing possibly in parallel with non-compromised ones. With param keyCompromise =

strict., the compromised sessions are finished before the non-compromised ones begin. The
chances of finding an attack are greater with param keyCompromise = approx.. (It may be
a false attack due to the approximations made in the verifier.)

– param movenew = false.

param movenew = true.

Sets whether the system should try to move restrictions under inputs, to have a more pre-
cise analysis (param movenew = true.), or leave them where the user has put them (param
movenew = false.).

– param predicatesImplementable = check.

param predicatesImplementable = nocheck.

Sets whether the system should check that predicate calls are implementable. See the clauses
declaration below for more details on this check. It is advised to leave the check turned on,
as it is by default. Otherwise, the semantics of the processes may not be well-defined.

– param verboseClauses = none.

param verboseClauses = explained.

param verboseClauses = short.

When verboseClauses = none, ProVerif does not display the clauses it generates. When
verboseClauses = short, it displays them. When verboseClauses = explained, it adds
an English sentence after each clause it generates to explain where this clause comes from.

– param explainDerivation = true.

param explainDerivation = false.

When explainDerivation = true, ProVerif explains in English each step of the derivation
(returned in case of failure of a proof). This explanation refers to program points in the given
process. When explainDerivation = false, it displays the derivation by referring to the
clauses generated initially.

– param reconstructTrace = true.

param reconstructTrace = false.

With param reconstructTrace = true., when a query cannot be proved, the tool tries to
build a pi calculus execution trace that is a counter-example to the query [5].

10

This feature is currently incompatible with key compromise (param keyCompromise = approx.

or param keyCompromise = strict.).

Moreover, for noninterf and choice, it reconstructs a trace, but this trace may not always
prove that the property is wrong: for noninterf, it reconstructs a trace until a program
point at which the process behaves differently depending on the value of the secret (takes a
different branch of a test, for instance), but this different behavior is not always observable
by the adversary; similarly, for choice, it reconstructs a trace until a program point at which
the process using the first argument of choice behaves differently from the process using the
second argument of choice.

For injective queries, the trace reconstruction proceeds in two steps. In the first step, it
reconstructs a trace that corresponds to the derivation found by resolution. This trace gen-
erally executes events once, so does not contradict injectivity. In a second step, it tries to
reconstruct a trace that executes certain events twice while it executes other events once, in
such a way that injectivity is really contradicted. This second step may fail even when the
first one succeeds. For non-injective queries (including secrecy), when a trace is found, it is a
counter-example to the query, which is then false.

– param traceBacktracking = true.

param traceBacktracking = false.

Allow or disable backtracking when reconstructing traces. In most cases, when traces can
be found, they are found without backtracking. Disabling backtracking makes it possible to
display the trace during its computation, and to forget previous states of the trace. This
reduces memory consumption, which can be necessary for reconstructing very big traces.

– param unifyDerivation = true.

param unifyDerivation = false.

When set to true, activates a heuristic that increases the chances of finding a trace that
corresponds to a derivation. This heuristic unifies messages received by the same input (same
ocurrence and same session identifiers) in the derivation. Indeed, these messages must be
equal if the derivation corresponds to a trace.

– param traceDisplay = short.

param traceDisplay = long.

param traceDisplay = none.

Choose the format in which the trace is displayed after trace reconstruction. By default
(param traceDisplay = short.), outputs the labels of a labeled reduction. With param

traceDisplay = long., outputs the current state before each input and before and after
each I/O reduction, as well as the list of all executed reductions. With param traceDisplay

= none., the trace is not displayed.

• [private] fun 〈ident〉/n.

fun f/n. declares a function symbol f of arity n. This function symbol is a constructor. When
private is not present, the function can be applied by the attacker. When private is present, the
function cannot be applied by the attacker. This last case is useful to model tables of keys stored
in a server, for instance. Only the server can use the table to get associations between host names
and keys.

• data 〈ident〉/n.

data f/n. declares a data function symbol f of arity n. Data function symbols are similar to
tuples: the adversary can construct and decompose them.

• [private] reduc (〈ident〉(seq〈term〉) = 〈term〉;)∗

〈ident〉(seq〈term〉) = 〈term〉.

11

This declares destructors:

reduc f(M1, . . . ,Mn) = M0;

f(M ′

1
, . . . ,M ′

n) = M ′

0
;

. . .

f(M ′′

1
, . . . ,M ′′

n) = M ′′

0
.

declares the destructor f , of arity n, with the given rewrite rules. When a term f(M1, . . . ,Mn) is
met, it is replaced by M0, and similarly for the other rules. When several rules can be applied,
the process chooses one possibility non-deterministically (but the analysis considers all possibili-
ties). When no rule can be applied, the destructor is not defined; the process blocks. The terms
M0, . . . ,Mn,M

′

0
, . . . ,M ′

n, . . . must contain only variables and constructors.

• equation 〈term〉 = 〈term〉.

equation M1 = M2 says that the terms M1 and M2 are in fact equal. The function symbols in the
equation should be only already declared constructors. The treatment of equations is still rather
limited. The equation f(x, g(y)) = f(y, g(x)), used for Diffie-Hellman key agreements, is known to
work. The system may not terminate when more complex equations are entered.

• pred 〈ident〉/n seq〈ident〉.

pred p/n i1, . . . , in. declares a new predicate p, of arity n, with special properties described by
i1, . . . , in. Currently, the allowed elements for i1, . . . , in are block, decompData, decompDataSelect,
and memberOptim. See the section on the Horn clause input for more details on the effect of these
properties.

All predicates must be declared by such a declaration before being used. The predicates attacker,
mess, ev, and evinj are reserved and cannot be declared.

• query 〈query〉.

This declaration tells the system which properties we want to prove. Its syntax is given in Figure 3.

– A term M is a query can contain as usual constructor applications and variables, but also
constructs a[. . .] or simply a that designate names created by the restriction new a. a[]
designates any name created by the restriction new a. a[v1 = M1, . . . , vn = Mn] designates
any name created by the restriction new a when the variables v1, . . . , vn have valueM1, . . . ,Mn

respectively. These variables must be in scope at the considered restriction. A special variable
!n corresponds to the session identifier of the n-th replication, starting from the top of the
process with n = 1 for the first replication. Session identifiers should only be bound to
variables. By using the same variable several times, one can express that two names should
be created in the same copy of the process.

Note that, to avoid ambiguities, several restrictions in the processes should not create the
same name. (When several restrictions create the same name and one tries to refer to this
name in a query, an error message is displayed.)

Also note that one should be careful of not mixing names and variables: An identifier that
is defined by a restriction represents any name defined at that restriction (possibly different
names for different occurrences), a free name of the process represents that name, while other
identifiers are variables that represent any term (the same term for all occurrences of the same
variable).

A term M in a query must not contain destructors.

– Facts in queries can be p : M1, . . . ,Mn [phase n], with the following meanings:

∗ attacker:M means that the attacker may have M in some phase (M is not secret).

∗ attacker:M phase n means that the attacker may have M in phase n.

∗ mess:M,N means that the message N may be sent on channel M in the last phase.

∗ mess:M,N phase n means that the message N may be sent on channel M in phase n.

12

∗ ev:f(M1, . . . ,Mn) means that the event event f(M1, . . . ,Mn) may be executed. There
must exist some event f(M ′

1
, . . . ,M ′

n) instruction with the same function symbol f in
the process.

∗ evinj:f(M1, . . . ,Mn) means that the event event f(M1, . . . ,Mn) may be executed, and
that furthermore we want to prove injective correspondences for this event (see examples
below).

∗ p : M1, . . . ,Mn, where p is a user-defined predicate (see the pred and clauses declara-
tions), means that the corresponding fact is true.

Note that the phase indication is not allowed for ev, evinj, and user-defined predicates. One
can also use the facts M = N and M <> N .

– The elementary query 〈realquery〉 can be F ==> φ where φ is formed from conjunctions and
disjunctions of facts. The query is true if and only if, when F is true, then φ is true. The
query can also be a fact F (see 〈query〉): the answer can be that not F is true, i.e. the fact F
is false, or that not F cannot be proved, when the system finds a (possibly false) attack that
would make F true. (This query is a shorthand for F ==> false.) Here are some examples:

∗ query attacker:M determines whether the attacker may have M . not attacker:M is
true when M is secret.

∗ query ev:f(M1, . . . ,Mn) determines whether the event event f(M1, . . . ,Mn) may be
executed. not ev:f(M1, . . . ,Mn) is true when the event event f(M1, . . . ,Mn) can never
be executed.

∗ query ev:f(x1, . . . , xn) ==> ev:f ′(x1, . . . , xn) is non-injective agreement: it is true when,
if the event f(x1, . . . , xn) has been executed, then the event f ′(x1, . . . , xn) must have been
executed (before the event f(x1, . . . , xn)).

∗ query evinj:f(x1, . . . , xn) ==> evinj:f ′(x1, . . . , xn) is injective agreement: it is true
when, for each executed event f(x1, . . . , xn), there exists a distinct executed event f ′(x1,
. . . , xn) (and f ′(x1, . . . , xn) is executed before f(x1, . . . , xn)).

∗ query evinj:f(M1) ==> evinj:f ′(M2) & ev:f ′′(M3) is true if and only if for each ex-
ecuted event f(M1) there exists a distinct executed event f ′(M2) and an executed event
f ′′(M3). (The event f ′′(M3) can be the same for several different events f(M1), since it
is marked with ev and not evinj.)

∗ query evinj:f(M1) ==> evinj:f ′(M2) | ev:f ′′(M3) is true if and only if for each exe-
cuted event f(M1) either there exists a distinct executed event f ′(M2) or an event f ′′(M3)
has been executed.

Note that using evinj or ev before the arrow ==> does not change the meaning of the
query. It is important only after the arrow.

We can also use nested queries : queries in which some of the events after the arrow ==> are
replaced with queries. For instance, F ==> (F ′ ==> F ′′). For this query to be interesting,
F ′ and F ′′ must be events. This query is true if and only if, when F is true, the event F ′ is
executed, and F ′′ is executed before F ′. (In contrast, the query F ==> F ′ & F ′′ would not
order F ′ and F ′′.) If F is also an event, F ′ is executed before F .

We can use more complex queries in this style, such as

F0 ==> (F1 ==> (F2 ==> (F3 ==> F4)))

which is true if and only if, when F0 is true, F4, F3, F2, F1 have been executed in that order,
or

F0 ==> (F1 ==> F2) & (F3 ==> F4)

which is true if and only if, when F0 is true, F2 has been executed before F1 and F4 before
F3.

– The full query 〈query〉 consists of a list containing as elements queries of the form 〈realquery〉
or 〈gfact〉 as described above, as well as the following two elements:

13

∗ putbegin ev:f1, . . . , fn or putbegin evinj:f1, . . . , fn instructs the system to consider
active “begin” events the events f1(. . .), . . . , fn(. . .). This means that when such an event
needs to be executed to trigger another action, a begin fact is going to appear in the hy-
pothesis of the corresponding clause. This is useful when the exact events that should ap-
pear in a query are unknown. For instance, with the query query putbegin ev:f; ev:f ′(x),
the system generates clauses that conclude end:f ′(M), and by manual inspection of the
facts begin:f(M ′) that occur in their hypothesis, one can infer the full query:

query ev:f ′(. . .) ==> ev:f(. . .).

When using evinj:, the activated begin events contain an environment that can be used
to prove injective correspondences.
(This way of writing queries simulates what happened in older versions of ProVerif, up
to version 1.09.)

∗ let x = M binds the variable x to the term M . This is especially useful to designate sev-
eral times the same name. For example, query let x = a[]; attacker:f(x,x) deter-
mines whether the attacker may have f(x, x) where x is any name created by a restriction
new a. In contrast, query attacker:f(a[],a[]) determines whether the attacker may
have f(x, y) where x and y are (possibly different) names created by a restriction new a.
A variable bound by let x = M must be bound before being used in the following of the
query.

All queries of the list included in a single query declaration are evaluated by building one set
of clauses and performing resolution on it, while different query declarations are evaluated
by rebuilding a new set of clauses from scratch. So the way queries are grouped influences
the sharing of work between different queries, so the speed of the system. The main idea is
that one should group queries that involve the same events, but separate queries that involve
different events, because the more events appear in the query, the more complex the generated
clauses are, which can slow down the system considerably, especially on complex examples. If
one does not want to optimize, one can simply put a single query in each query declaration.

• noninterf seq〈interfspec〉.
where 〈interfspec〉 ::= 〈ident〉 [among (seq〈term〉))]

noninterf n1 among (S1), . . . , nk among (Sk). tells the system to prove strong secrecy for the
secrets n1, . . . , nk. That is, the system shows that several versions of the given process that differ
by their values of n1, . . . , nk are bisimilar (therefore they are testing equivalent, observationally
equivalent, . . . – see [8] for more details). When the among (Si) indication is present, it means that
ni can take its values only inside Si. When it is absent, ni can take any value not containing bound
names (or private free names).

Note that the let . . . suchthat construct is incompatible with the test of strong secrecy. What
the solver does in this case cannot be done when the input is given under the form of Horn
clauses (because the simplifications done by the system are sound only for particular clauses that
correspond to those generated from a process; they do not make sense for general clauses).

• weaksecret 〈ident〉.

weaksecret n tells the system to check whether an attacker guessing the value of n can verify its
guess offline. This is useful when n is a weak secret, such as a password, that an attacker could
guess by exhaustive enumeration.

• nounif 〈gfactformat〉[/n] [b]. where b = ;〈ident〉 = 〈gtermformat〉; . . . ;〈ident〉 = 〈gtermformat〉

nounif F [/n] modifies the selection of facts to be resolved upon, to avoid resolving facts that
match F . A fact F ′ matches F if and only if F ′ = σF for some substitution σ that maps variables
always marked with a star * to any term and variables that occur at least once without star to
a variable. The optional integer n indicates how much we should avoid resolution on facts that
match F : the greater n, the more such resolutions will be avoided.

14

The only supported facts F are attacker:M [phase n], mess:M,N [phase n], and p : M1, . . . ,Mn

when p is a user-defined predicate.

The fact F can contain as usual constructor applications and variables, but also constructs a[. . .],
as in queries. (See the declaration query above.)

nounif F [/n];x1 = M1; . . . ;xn = Mn corresponds to nounif F{Mn/xn} . . . {M1/x1}. (xj

may occur in Mi only when i > j). This construct is especially useful to designate several
times the same name: for example nounif attacker:f(x,x);x = a[] prevents resolution on
attacker : f(a[M1, . . . , Mm], a[M1, . . . , Mm]) while nounif attacker:f(a[],a[]) prevents resolution
on attacker : f(a[M1, . . . , Mm], a[M

′

1
, . . . , M′

m
]).

In 〈gfactformat〉 and 〈gtermformat〉, an identifier without arguments a stands for a() when the
function a has been defined (it must then have arity 0), for a[] when a restriction new a occurs in
the process, and for a variable otherwise.

• elimtrue 〈fact〉.: same as for the Horn clause front-end (to be used with user-declared predicates).

• not 〈gfact〉 [b]. where b = ;〈ident〉 = 〈gterm〉; . . . ;〈ident〉 = 〈gterm〉

not F adds the assumption that F is not derivable (or all instances of F when F contains variables).
This speeds up the solving process. At the end of the solving process, the system checks that F is
indeed not derivable. If it is not, the proof fails with an error message. The only supported facts F
are attacker:M [phase n], mess:M,N [phase n], and p : M1, . . . ,Mn when p is a user-defined
predicate.

For not attacker:M [phase n], when phase n is present, it means that M is secret in phases
up to phase n. When phase n is absent, it means that M is secret in all phases. For back-
ward compatibility, the syntax not M [phase n] [b]. is also supported as an abbreviation of
not attacker:M [phase n] [b]..

The fact F can contain as usual constructor applications and variables, but also constructs a[. . .],
as in queries. (See the declaration query above.)

not F;x1 = M1; . . . ;xn = Mn corresponds to not F{Mn/xn} . . . {M1/x1}. (xj may occur in Mi

only when i > j). This construct is especially useful to designate several times the same name: for
example not attacker:f(x,x);x = a[] means that f(x,x) is secret when x is any name created
by new a, while not attacker:f(a[],a[]) means that f(x,y) is secret when x and y are any
(possible different) names created by new a.

In 〈gfact〉, an identifier without arguments a stands for a() when the function a has been defined
(it must then have arity 0), for a[] when a restriction new a occurs in the process, and for a variable
otherwise.

• [private] free seq〈ident〉.

free i1, . . . , in. declares the free names i1, . . . , in. When the keyword private is present, the
name is not known by the adversary, whereas by default, it is known by the adversary. When a
name occurs free in the process, and is not declared by such a declaration, a warning is displayed.
We strongly encourage you to declare all free names of your processes. Indeed, an unexpected free
name corresponds in general to a typesetting error, and the warning might become an error in a
future release.

• clauses (〈clause〉;)∗ 〈clause〉.

This introduces clauses that define predicates. These predicates can be used in let . . . suchthat

processes and in tests if . . . then. Note that there is an implementability condition. Essentially,
for each predicate invocation, we bind variables in the conclusion of the clauses that define this
predicate and whose position corresponds to bound arguments of the predicate invocation. Then,
when evaluating hypotheses of clauses from left to right, all variables of predicates must get bound
by the corresponding predicate call. Recursive definitions of predicates are allowed.

The meaning of clauses is the same as for the Horn clauses input system.

15

• let 〈ident〉 = 〈process〉.

Defines 〈ident〉 as the process 〈process〉. 〈ident〉 can be used inside the definition of processes. If
the process contains free names or variables, they can be bound when 〈ident〉 is used. (So, this is
a kind of macro-expansion rather than a real definition.)

In the syntax of processes,

• The pattern 〈ident〉 matches any term, and binds the given variable identifier to the matched term.
The pattern (seq〈pattern〉) matches tuples (and each component of the tuple is recursively matched
by the given patterns). The pattern f(seq〈pattern〉) matches terms of the form f(M1, . . . ,Mn) and
the subterms Mi are recursively matched by the given patterns, where f is a data function symbol
(see the data declaration). When f is not a data function symbol, such a construction is not
allowed. The pattern =〈term〉 matches a term that is equal to the given 〈term〉. (This is equivalent
to an equality test.)

• Parentheses are just used to clarify associativity of parallel compositions, and which processes are
replicated.

• An identifier x must be defined by a previous declaration let x = P . It is then equivalent to
having a copy of P instead of x.

• The replication ! P executes an unbounded number of copies of P in parallel: P | P | P |

• The nil process 0 does nothing.

• The restriction new a;P creates a new name a, then executes P .

• The test if f then P else Q executes P when the fact is true. Otherwise, it executes Q.
The process if f then P is equivalent to if f then P else 0. Note that the predicate calls
are subject to an implementability condition (see the clauses declaration above). Equality and
inequality tests are always implementable.

• The input in(c,p);P inputs a message on channel c, and executes P after matching the input
message with p, and binding the variables contained in p. When a message does not match p,
it cannot be input by this construct. The channel c can be any term. The process in(c,x) is
equivalent to in(c,x);0.

• The output out(c,M);P outputs the message M on the channel c, then executes P . (c can be
any term.) The process out(c,M) is equivalent to out(c,M);0.

• The let binding let p = M in P [else Q] executes P after matching the term M with the
pattern p, and binding the variables contained in p. If the term M does not match the pattern p,
the process blocks, or executes Q when the else clause is present.

• The binding let x1, . . . , xn such that f in P [else Q] binds new variables x1, . . . , xn, such
that f is true, then executes P . If such a binding is impossible, it executes Q. Note that the
predicate calls are subject to an implementability condition (see the clauses declaration above).
Facts M <> N are not allowed in f , because of this implementability condition (they make sense
only when all variables are already bound; in this case, using the else clause of a if is more
appropriate).

• The parallel composition P1|P2 executes P1 and P2 in parallel.

• The event event M;P emits the event event(M), then executes P . The term M must be a
function application f(M1, . . . ,Mn). The function f need not be declared before. When the process
P is absent, nothing is executed after the event. Events are not really part of the cryptographic
protocol, but are used for authenticity specifications [7] and other properties of protocols. Events
can be used to keep track of which steps of the protocol are executed.

16

• The phase separation command phase n;P indicates the beginning of phase n. Intuitively, we
consider protocols split in several phases, and the instructions under phase n are active only
during the n-th phase of the protocol. So the process first executes phase 0, that is, it executes all
instructions not under phase i for i ≥ 1. Then, when changing from phase 0 to phase 1, it discards
all processes that have not reached a phase i instruction for i ≥ 1 and executes the instructions
under phase 1 but not under phase i for i ≥ 2. More generally, when changing from phase n to
phase n+ 1, all processes that have not reached a phase i instruction for i ≥ n+ 1 are discarded
and the instructions under phase n + 1 but not under phase i for i ≥ n + 2 are executed. The
adversary obviously keeps its knowledge when changing phases.

Phases can be used to model scenarios in which temporality is important, such as when a long-term
key is published after some sessions are executed and we want to determine whether the adversary
can then have the session secrets. (The long-term keys are then published in phase 1, while the
rest of the protocol is in phase 0.) Similarly, phases can be used to model protocols that reveal a
secret at the end of the session.

The phase number must be at least 1. Phases cannot be used with key compromise, param

keyCompromise = approx. or param keyCompromise = strict., because key compromise in-
troduces itself a 2-phase process.

Two cases have to be distinguished:

• The terms in the process never contain choice. The process defines one pi calculus process, and
we can ask the various queries (query, noninterf, weaksecret).

• The terms in the process contain choice. The process in fact defines two pi calculus processes:
one process in which the first argument of choice is used, and one in which the second one is used.
The verifier then tries to show the observational equivalence of these two processes [9]. The queries
query, noninterf, weaksecret, and key compromise cannot be used.

6 Output of the system

The system gives an output of the following form:

Starting rules:

Rule 10: attacker:c[]

Rule 9: attacker:k -> attacker:host(k)

...

Completing...

Completed rules:

attacker:encrypt(secretB[],k[Kas[],Kbs[],Na[],Nb[host(Kas[]),Na[]]])

attacker:v147 & attacker:v148 -> attacker:encrypt(v148,k[Kas[],v147,Na[],v148])

...

ok, secrecy assumption verified: fact unreachable attacker:Kbs[]

...

goal unreachable: attacker:secretB[]

...

First, it displays the Horn clauses representing the protocol. If you use the Horn clauses input, these
are the clauses you entered. If you use the pi calculus input, these clauses are the result of a translation
of the process, described in [2]. This translation uses mainly two predicates attacker:M meaning that
the adversary may have M , and mess:C,M meaning that the message M may be sent on channel C. It
uses moreover a predicate end and a blocking predicate begin for proofs involving events. Some other
predicates are used for modeling the compromise of session keys. The clauses are numbered. These
numbers are used in the following of the output to reference the clauses.

Second, the system completes the clauses, using a resolution-based algorithm. Depending on the
verbose parameter, it prints all clauses it creates, or only numbers of clauses every 200th clause created.

Third, it outputs the list of clauses obtained after completion (after the words Completed rules).

17

Fourth, if you have given secrecy assumptions, using the declaration not, the system checks them.
In case the secrecy assumption is not satisfied, it stops immediately.

Fifth, the system checks each goal you have given using query. If the fact mentioned on the left of
==> in the query is derivable, for each found clause that derives it, the system outputs goal reachable,
and a derivation of the clause from the initial clauses. The derivation is built according to the following
format:

• When a part of the derivation is done using one of the rules:

rule n 〈fact proved by rule n〉

〈derivation of first hypothesis of rule n〉

. . .

〈derivation of last hypothesis of rule n〉

• When reusing an already proved fact:

duplicate 〈fact〉

You should look for the derivation of 〈fact〉 somewhere under the duplicate line.

• When taking the n-th element of a tuple (In the Horn clauses input system, this happens when
you have declared the predicate p decompData. In the pi calculus input system, this happens with
p = attacker.):

n-th p : Mn

〈derivation of p : (M1, . . . ,Mk)〉

A similar situation happens when you have declared data f :

n-th p : Mn

〈derivation of p : f(M1, . . . ,Mk)〉

• When building a tuple (In the Horn clauses input system, this happens when you have declared
the predicate p decompData. In the pi calculus input system, this happens with p = attacker.):

k-tuple p : (M1, . . . ,Mk)

〈derivation of p : M1〉

. . .

〈derivation of p : Mk〉

A similar situation happens when you have declared data f :

f-tuple p : f(M1, . . . ,Mk)

〈derivation of p : M1〉

. . .

〈derivation of p : Mk〉

• When proving p : x (in the Horn clauses input system, when you have declared the predicate p
elimVar; in the pi calculus input system, when p = attacker.)

any p : x

Note that the derivations of inequalities of terms are omitted.
At the end, it concludes with RESULT Query ...is true. or RESULT Query ...cannot be proved..

18

References

[1] M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email. In
R. Cousot, editor, Static Analysis, 10th International Symposium (SAS’03), volume 2694 of Lecture
Notes on Computer Science, pages 316–335, San Diego, California, June 2003. Springer.

[2] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs.
Journal of the ACM, 52(1):102–146, Jan. 2005.

[3] M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email. Science
of Computer Programming, 58(1–2):3–27, Oct. 2005. Special issue SAS’03.

[4] M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the pi calculus. In D. Schmidt, editor,
Programming Languages and Systems: 13th European Symposium on Programming (ESOP’04),
volume 2986 of Lecture Notes on Computer Science, pages 340–354, Barcelona, Spain, Mar. 2004.
Springer.

[5] X. Allamigeon and B. Blanchet. Reconstruction of attacks against cryptographic protocols. In
18th IEEE Computer Security Foundations Workshop (CSFW-18), pages 140–154, Aix-en-Provence,
France, June 2005. IEEE.

[6] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th IEEE
Computer Security Foundations Workshop (CSFW-14), pages 82–96, Cape Breton, Nova Scotia,
Canada, June 2001. IEEE Computer Society.

[7] B. Blanchet. From secrecy to authenticity in security protocols. In M. Hermenegildo and G. Puebla,
editors, 9th International Static Analysis Symposium (SAS’02), volume 2477 of Lecture Notes on
Computer Science, pages 342–359, Madrid, Spain, Sept. 2002. Springer.

[8] B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on
Security and Privacy, pages 86–100, Oakland, California, May 2004.

[9] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security
protocols. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages 331–340,
Chicago, IL, June 2005. IEEE Computer Society.

[10] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination.
Theoretical Computer Science, 333(1-2):67–90, Mar. 2005. Special issue FoSSaCS’03.

19

