
Computationally Sound Mechanized Proofs for Basic and
Public-key Kerberos

B. Blanchet
∗

CNRS & École Normale
Supérieure & INRIA

blanchet@di.ens.fr

A.D. Jaggard
†

DIMACS
Rutgers University

adj@dimacs.rutgers.edu

A. Scedrov
‡

Department of Mathematics
University of Pennsylvania

scedrov@math.upenn.edu

J.-K. Tsay
Σ

Department of Mathematics
University of Pennsylvania

jetsay@math.upenn.edu

ABSTRACT
We present a computationally sound mechanized analysis of
Kerberos 5, both with and without its public-key extension
PKINIT. We prove authentication and key secrecy proper-
ties using the prover CryptoVerif, which works directly in the
computational model; these are the first mechanical proofs
of a full industrial protocol at the computational level. We
also generalize the notion of key usability and use Cryp-
toVerif to prove that this definition is satisfied by keys in
Kerberos.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal meth-
ods; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—Me-
chanical verification

∗This research has been done within the INRIA ABSTRAC-
TION project-team (common with the CNRS and the ÉNS)
and was partly supported by the ANR project ARA SSIA
FormaCrypt.
†Partially supported by NSF Grants DMS-0239996, CNS-
0429689, and CNS-0753492, and by ONR Grant N00014-
05-1-0818; this work was started while Jaggard was in the
Mathematics Department at Tulane University.
‡Partially supported by OSD/ONR CIP/SW URI projects
through ONR Grants N00014-01-1-0795 and N00014-04-1-
0725. Additional support from NSF Grants CNS-0429689
and CNS-0524059 and from ONR Grant N00014-07-1-1039.
ΣPartially supported by ONR Grants N00014-01-1-0795 and
N00014-07-1-1039, and by NSF Grant CNS-0429689.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

General Terms
Security, Verification

Keywords
Kerberos, PKINIT, automatic verification, computational
model, key usability

1. INTRODUCTION
There are two main approaches to the verification of cryp-

tographic protocols. One approach, known as the cryp-
tographic or computational model, is based on probability
and complexity theory and retains the view of messages as
bitstrings and encryption/decryption as probabilistic algo-
rithms. Security properties proved in this model give strong
security guarantees, since properties are verified against any
probabilistic Turing machine attacking the protocol. An-
other approach, known as the symbolic or Dolev-Yao model,
can be viewed as an idealization of the former approach for-
mulated using an algebra of terms. Messages are abstracted
as terms in this algebra and, e.g., encryption algorithms
are simply function symbols on these terms. This symbolic
model has been successfully applied to uncover problems
in the design of security protocols [19, 28, 29, 33]. More-
over, verification methods based on the symbolic model have
become efficient and robust enough to be deployed for the
analysis of even large commercial protocols [4, 17, 22, 29,
33]. Because by-hand proofs in the detailed computational
model are prone to human error and are, even in the sym-
bolic model, very time consuming for complex protocols,
effort has been put into developing mechanized or fully au-
tomated provers. One area of focus has been provers that
work in the symbolic model, which facilitates the use of ex-
isting theorem provers and model checkers, and some of the
resulting tools have been used to analyze commercial pro-
tocols [3, 6, 12, 30]. Since the pioneering work by Abadi
and Rogaway [1], attention has also been paid [5, 18, 21]
to bridging the gap between the symbolic and the computa-
tional models; in these frameworks proofs are carried out in
a symbolic model, facilitating automation, and the results
can be lifted to the computational model under certain con-
ditions. However, provers based on computationally sound
symbolic frameworks (e.g., [20, 38]) are currently at most

able to cope with academic protocols.
Here we report results on the formalization and analy-

sis of the Kerberos 5 protocol [34], with and without its
public-key extension PKINIT [23], using the prover Cryp-
toVerif [13, 14, 15]. Unlike the previously mentioned tools,
CryptoVerif can verify protocols directly in the computa-
tional model. We note that CryptoVerif is different from
ProVerif [12], a well-established tool which verifies proto-
cols in the symbolic model; CryptoVerif is a next-generation
prover. CryptoVerif proofs are presented as sequences of
games in a probabilistic process calculus inspired by [25,
26, 27, 32]. Previously, CryptoVerif has only been used to
analyze academic protocols [13, 14], so this work provides
a test case for the suitability of CryptoVerif for analyzing
real-world protocols. Kerberos and its public-key extension
PKINIT (used in ‘public-key mode’ as discussed below) pro-
vide a particularly good test case because they incorporate
many different design elements: symmetric and asymmet-
ric encryption, digital signatures, and keyed hash functions.
Using CryptoVerif’s interactive mode, we are able to prove
authentication and secrecy properties for Kerberos at the
computational level. This suggests that CryptoVerif is ca-
pable of analyzing large-scale industrial protocols.

Earlier work on analyzing Kerberos includes: analysis
of Kerberos 4 (the previous version of Kerberos, which
lacked the complexity of Kerberos 5 with PKINIT) using
Isabelle [7]; symbolic proofs by hand of authentication and
secrecy in basic Kerberos [17]; the discovery of a flaw in a
draft version of PKINIT (which led to a Windows Security
Bulletin [31]) and the symbolic proof that the fixed version
was secure; by-hand computational proofs of the security
of Kerberos using the Backes–Pfitzmann–Waidner (BPW)
cryptographic library framework [4]; and the mechanical
analysis of the PKINIT fragment (without consideration of
the later rounds or basic Kerberos without PKINIT) [24].
Our work here extends these earlier analyses of Kerberos to
use a mechanized tool on the full Kerberos protocol, with
and without its public-key extension PKINIT; this repre-
sents the first computationally sound mechanized proof of a
full industrial protocol.

In proving confidentiality properties for Kerberos, we con-
sider not only key indistinguishability but also the notion
of key usability introduced in [21] (and which was proved
by hand for Kerberos in [36]). This weaker confidentiality
property ensures that a key is still ‘good’ for use in crypto-
graphic operations, even though it might be distinguishable
from a random bitstring. This type of property is impor-
tant for protocols that, like Kerberos, perform operations
with a key during a protocol run but then allow for the fu-
ture use of this key; because the key has been used, it may
be distinguishable from random, but that still may not help
an attacker learn any information about messages that are
later encrypted under that key. Here we define a notion of
strong key usability that is less restrictive on the adversary’s
power than the original definition, and we use CryptoVerif
to prove that certain keys in Kerberos satisfy this stronger
version of key usability.

Using CryptoVerif we are able to prove authentication
properties for Kerberos similar to those previously proved
in [4]. However, in contrast to proofs in the BPW model, our
proofs using CryptoVerif do currently not allow for adaptive
corruption; the set of honest protocol participants is deter-
mined beforehand and cannot be reduced during the run of

C KAS TGS (T) S

• •-C, T, n1
n1

•
?

AK
tK

• �
C,, {AK, n1, tK , T}kC

•

�C, TGT, {AK, n1, tK , T}kC

.

.

.

.
n3
tC

•-TGT, {C, tC}AK , S, n3

•
?

SK
tT

• �
C,, {SK, n3, tT , S}AK

� C, ST, {SK, n3, tT , S}AK

•

.

.

.

.
t′C

•-ST, {C, t′C}SK

•
?

• � {t′C}SK

Figure 1: Message flow in basic Kerberos, where
TGT = {AK, tK , C}kT and ST = {SK, tT , C}kS

the polynomially many protocol sessions.
In Section 2 we review basic and public-key Kerberos 5.

Section 3 briefly explains the syntax and semantics of Cryp-
toVerif, including a sample of our formalization of Ker-
beros, and outlines the authentication and secrecy proper-
ties proved by CryptoVerif. Section 4 presents the details of
these results and other aspects of our work, while Section 5
provides a summary and surveys areas for future work.

2. KERBEROS AND ITS PROPERTIES
We start with an overview of Kerberos and its public-

key extension before discussing (at an informal level) the
security properties that we study here. Our description of
the protocol here reflects the level of abstraction that we
use in our CryptoVerif scripts and which is the level of ab-
straction that has been used to analyze Kerberos in other
frameworks; additional low-level details are described in the
protocol specifications [23, 34].

2.1 Basic Kerberos
Kerberos [34] is designed to allow a client to repeatedly

authenticate herself to multiple network servers based on a
single login. This authentication process can also be used
to produce a key shared between the client and end server
that can be used for future communications between them.
Typically, the human user provides a password at the ini-
tial login and a key derived from this password is used in
the first round of Kerberos. The credential (or ‘ticket’) that
the client process obtains in this round is then used to ob-
tain other credentials so that the password-derived key is
not used again. The client uses this first credential, which
might be valid for a single day, to obtain a credential for a
particular end server; this second credential might be valid
for a few minutes. Finally, the client presents this credential
to the end server. Each credential may be used repeatedly
as long as it is valid; once the user enters her password, the
rest of the protocol can take place in the background.

Figure 1 shows a more detailed view of the message flow
in basic Kerberos. The first round, called the Authentica-
tion Service (AS) exchange, comprises the first two lines of
this figure. In it, the client C generates a fresh nonce n1

and includes it in a message to the Kerberos Authentication
Server (KAS) requesting a Ticket Granting Ticket (TGT)
for use with the Ticket Granting Server (TGS) named T .
The KAS generates a fresh key AK for use between C and
T (as well as a timestamp tK) and sends this key to C. One
copy of AK is encrypted under C’s long-term key kC (typ-
ically derived from a password), while another is included
in the TGT, which is encrypted with a long-term key kT

shared between the KAS and T .
The client then forwards the TGT to T—along with an

authenticator encrypted under AK , a fresh nonce n3, and
the name S of an end server—to request a Service Ticket
(ST) for S. This message, and the reply from T , form the
Ticket Granting (TG) exchange. T generates a fresh key SK
for use between C and S (as well as a timestamp tT) and
sends this to C. One copy of SK is now encrypted under
AK and another is included in the ST, which is encrypted
under a long-term key kS shared between T and S. The TG
exchange may be repeated multiple times—to obtain STs
for any number of end servers—with a single TGT as long
as that ticket is valid.

The last two messages shown in Figure 1 form the
Client/Server (CS) exchange. In this round of the proto-
col, C forwards the ST to S along with an authenticator:
C’s name and a timestamp t′C encrypted under SK . The
last line of the figure shows the optional reply by S, which
consists of the timestamp from the authenticator encrypted
under SK .

Although not shown in Figure 1, the CS exchange allows
C and S to agree on a key for use in future communications
between them [34]. The client may send a proposed key in
the authenticator she sends to S (encrypted under AK), and
S may send a proposed key in the reply to C (encrypted
under AK). In our analysis of this key, we assume that
exactly one of C and S proposes a key this way.

2.2 The PKINIT Extension
The PKINIT extension [23] to Kerberos replaces the ba-

sic AS exchange, allowing the use of a PKI in place of a
long-term key shared between the client C and the KAS
K. Here we focus exclusively on PKINIT’s ‘public-key
mode,’ but PKINIT may also be used in ‘Diffie-Hellman
(DH) mode’ [23]; DH mode, which has recently be stud-
ied in [37], appears to have limited implementation, while
public-key mode has been implemented for all major oper-
ating systems. PKINIT does not change either of the later
rounds in the Kerberos protocol. Figure 2 shows the AS ex-
change when PKINIT is used. In addition to the data sent
in the first message of basic Kerberos, C also sends to K her
signature over a timestamp t′′C and a second nonce n2, along
with certificates for C’s public key. K now generates a key
k in addition to AK and tK as in basic Kerberos. The fresh
key k is used in place of kC to communicate AK to C. k
is sent to C encrypted under C’s public key pkC along with
certificates for K’s public key and a checksum ck taken over
C’s request; this checksum consists of a keyed hash function
(HMAC) using a key derived from k (more precisely, the
key is the output of a key derivation function whose input
includes k). Furthermore, k and ck are signed by K. (Note
that in both of these messages, the signatures [] are imple-
mented in Kerberos by sending the signed data alongside a
signature over the data.)

C KAS

• •-
CertC , [t′′C , n2]skC

, C, T, n1n1,
n2, t

′′
C

•
?

k,AK
tK

• �

{{CertK , [k, ck]skK
}}pkC , C,

TGT , {AK, n1, tK , T}k

Figure 2: Message flow in the fixed version of
PKINIT, where TGT = {AK, tK , C}kT

.

2.3 Security Properties
We now informally state security properties of Kerberos

concerning entity authentication and key secrecy. In Sec-
tion 4 we will formalize these security properties in the lan-
guage of CryptoVerif and present the results in the compu-
tational model.

Property 1 (Authentication properties)
a. [Authentication of KAS to client] If a client receives

what appears to be a valid reply from the KAS, then
the KAS generated a reply for the client.

b. [Authentication of request for ST] If a TGS receives a
valid request for a service ticket, then the ticket in the
request was generated by the KAS. Furthermore, the
authenticator included in the request was generated by
the client.

c. [Authentication of TGS to client] If a client receives
what appears to be a valid reply to a request for a ser-
vice ticket for server S from a TGS, then the TGS
generated a reply for the client.

d. [Authentication of request to server] If S receives a
valid request, ostensibly from C, containing a service
ticket and the session key SK, then some TGS gener-
ated the session key SK for C to use with S and also
created the service ticket. Furthermore, C created the
authenticator.

e. [Authentication of server to client] If a client receives a
valid reply from server S then this reply was generated
by S.

We consider two different notions of key secrecy. One is
the standard notion of cryptographic key secrecy, and the
other is the notion of key usability [21] (see below in Sec-
tion 4.3). We note that the latter notion had not been con-
sidered in [4].

Property 2 (Secrecy properties)

a. [Secrecy of AK] If a client finishes an AS exchange
with the KAS, then the authentication key AK is cryp-
tographically secret until the client initiates the TS ex-
change, i.e., the second round.

b. [Secrecy of SK] If a client finishes an TG exchange
with a TGS, then the session key SK is cryptographi-
cally secret until the client initiates the CS exchange,
i.e., the third round.

c. [Usability of AK] If a client finishes a TG exchange
with a TGS, or if the TGS finishes an exchange with
the client, then the authentication key is usable for
IND-CCA2-secure encryption.

d. [Usability of SK] If a client finishes a CS exchange
with a server or if the server finishes an CS exchange
with the client, then the session key is usable for IND-
CCA2-secure encryption.

3. CRYPTOVERIF
In this section we give a brief overview of CryptoVerif, for-

malize Kerberos using it, and summarize the authentication
and secrecy properties proved by CryptoVerif.

3.1 CryptoVerif Basics
The prover CryptoVerif [11, 13, 14, 15], available at

http://www.cryptoverif.ens.fr, can directly prove secu-
rity properties of cryptographic protocols in the computa-
tional model. Protocols are formalized using a probabilistic
polynomial-time process calculus which is inspired by the pi-
calculus and the calculi introduced in [25] and [32]. In this
calculus, messages are bitstrings and cryptographic primi-
tives are functions operating on bitstrings. This calculus is
illustrated below on a portion of code coming from Kerberos.
A more detailed description of the process calculus is given
in [11].

The process calculus represents games, and proofs are
represented as sequences of games, where the initial game
formalizes the protocol for which one wants to prove cer-
tain security properties. In a proof sequence, two consecu-
tive games Q and Q′ are observationally equivalent, mean-
ing that they are computationally indistinguishable for the
adversary. CryptoVerif transforms one game into another
by applying, e.g., the security definition of a cryptographic
primitive or by applying syntactic transformations. In the
last game of a proof sequence the desired security properties
should be obvious. Given a security parameter η, Cryp-
toVerif proofs are valid for a number of protocol sessions
polynomial in η, in the presence of an active adversary.

CryptoVerif operates in two modes: a fully automatic and
an interactive mode. The interactive mode, which is best
suited for protocols using asymmetric cryptographic primi-
tives, requires a CryptoVerif user to input commands that
indicate the main game transformations the tool should per-
form. CryptoVerif is sound with respect to the security prop-
erties it shows in a proof, but properties it cannot prove are
not necessarily invalid.

3.2 Modeling Kerberos in CryptoVerif
As an example, we present the client role of the first round

of basic Kerberos (AS Exchange) from Figure 1 in the pro-
cess calculus. (The full CryptoVerif scripts are available at
http://www.cryptoverif.ens.fr/kerberos/.)

QC = !iC≤N c2[iC](hostT : tgs); new n1 : nonce;

c3[iC]〈C, hostT , n1〉;
c4[iC](=C,TGT : bitstring, m2 : bitstring);

let injbot(concat1(AK , =n1, tK , =hostT))
= dec(m2, kC) in

event fullCK (hostT , n1,TGT , m2)

Figure 3: CryptoVerif formalization of client’s ac-
tions in AS exchange.

The replicated process !iC≤NP represents N copies of P ,
available simultaneously, where N is assumed to be polyno-

mial in the security parameter η. These copies are indexed
by the integer value iC ∈ [1, N]. Each copy starts with an in-
put c2[iC](hostT : tgs). This input receives a message hostT
on channel c2[iC]. The channel is indexed by iC , so that, by
sending a message on channel c2[i] for a certain value of i,
the adversary can choose which copy of the process receives
the message and is then executed. The message hostT is
the name of the ticket granting server (TGS) to which the
client is going to send his request. The type tgs is a set
of bitstrings that contains the representation of all possible
names of ticket granting servers. The message is received
only if it belongs to this type.

Next, the process chooses a random nonce n1 uniformly
in the type nonce, by the construct new n1 : nonce. (A
probabilistic Turing machine can choose a number uniformly
at random only from sets whose size is a power of 2; to make
sure that the choice above is possible, we assume that nonce
consists of all bitstrings of a certain length.) The process
then sends the first message of the protocol C, hostT , n1

on channel c3[iC]. This message will be received by the
adversary; the adversary can do whatever he wants with
it, but in order to run a normal session of the protocol,
he should send this message to the Kerberos authentication
server (KAS).

After sending the message on channel c3[iC], the control
is returned to the adversary and the process c4[iC](. . .); . . .
is made available. This process waits for the second mes-
sage of the protocol and will be executed when a mes-
sage is sent on channel c4[iC]. The expected message
is C, TGT, m2 = C, {AK , tK , C}kT , {AK , n1, tK , hostT}kC .
The message received on channel c4[iC] then consists of three
parts: the client name C, the TGT TGT , and the message
m2 = {AK , n1, hostT}kC . The process checks that the first
component of this message is C by using the pattern = C;
the two other parts are stored in variables.

The process QC cannot check the TGT, which is en-
crypted under a key the client does not have. On the
other hand, QC can decrypt and check m2. It decrypts
m2 by dec(m2, kC) and checks that the resulting plain-
text matches the expected nonce and tgs. If the decryp-
tion fails, it returns the special symbol ⊥. The function
injbot is the natural injection from plaintexts to bitstrings
and ⊥, so that, when injbot(x) = dec(m2, kC), the de-
cryption succeeded and x is the plaintext. Furthermore,
the expected plaintext is the concatenation of AK , n1, tK ,
and hostT , concat1(AK , n1, tK , hostT). The concatenation
function concat1 is assumed to be injective, with inverses
computable in polynomial time, so that AK , n1, tK , and
hostT can be recovered from the plaintext in polynomial
time. This assumption is justifiable in view of the Kerberos
data structures involved. The let construct in QC checks
that the plaintext is of the required form, with the already
known values of n1 and hostT , and binds the variables AK
and tK to the received values.

When a check fails, the control is returned to the ad-
versary. When all checks succeed, QC executes the event
fullCK (hostT , n1,TGT , m2). Executing this event does not
affect the execution of the protocol; it just records that a cer-
tain program point is reached with certain values of the vari-
ables. Events are used for specifying authentication proper-
ties, as explained in Section 3.3. After executing the event,
the control is returned to the adversary.

In this calculus, all variables defined under replications are

implicitly arrays, indexed by the indices of these replications.
For instance, the variable hostT defined under !iC≤N is in
fact hostT [iC], so that each copy of the replicated process
stores the value of hostT in a distinct cell of the array. The
arrays allow us to keep track of the whole state of the system.
In the cryptographic proofs, the arrays used in the calculus
of CryptoVerif replace lists often used by cryptographers.
As an example of the use of lists, suppose that symmetric
encryption satisfies ciphertext integrity (INT-CTXT). This
assumption means that, when decryption succeeds, the con-
sidered ciphertext has been generated by calling the encryp-
tion function with the same secret key (provided the key is
not leaked). Then, one usually stores the computed cipher-
texts in a list, and upon decryption, one can additionally
check that the ciphertext is in the list. In our calculus, the
computed ciphertexts are always automatically stored in an
array, instead of a list, which avoids having to add explicit
list insertion instructions. The calculus provides an array
lookup construct, detailed in [11].

3.3 Authentication using CryptoVerif
Authentication in CryptoVerif is modeled by correspon-

dence properties [14]. Events e(M1, . . . , Mm) are used in or-
der to record that a certain program point has been reached,
with certain values of M1, . . . , Mm, and the correspondence
properties are properties of the form“if some event has been
executed, then some other events also have been executed,
with overwhelming probability”.

More precisely, we distinguish two kinds of correspon-
dences.

• A process Q satisfies the non-injective correspon-
dence event(e(M1, . . . , Mm)) ⇒

Vk
i=1 event(ei(Mi1, . . . ,

Mimi)) if and only if, with overwhelming probability,
for all values of the variables in M1, . . . , Mm, if the
event e(M1, . . . , Mm) has been executed, then the events
ei(Mi1, . . . , Mimi) for i ≤ k have also been executed for
some values of the variables of Mij (i ≤ k, j ≤ mi) not
in M1, . . . , Mm.

• A process Q satisfies the injective correspondence
inj-event(e(M1, . . . , Mm)) ⇒

Vk
i=1 inj-event(ei(Mi1, . . . ,

Mimi)) if and only if, with overwhelming probability,
for all values of the variables in M1, . . . , Mm, for each
execution of the event e(M1, . . . , Mm), there exist dis-
tinct corresponding executions of the events ei(Mi1, . . . ,
Mimi) for i ≤ k for some values of the variables of Mij

(i ≤ k, j ≤ mi) not in M1, . . . , Mm.

(Formal definitions can be found in [14]. CryptoVerif can
prove more general correspondences [14], but the correspon-
dences above were sufficient for our study of Kerberos.)

3.4 Secrecy using CryptoVerif
A variable is considered secret when the adversary has no

information on it, that is, the adversary cannot distinguish
it from a random number. CryptoVerif distinguishes two
notions of secrecy.

• A process Q preserves the one-session secrecy of x
when, with overwhelming probability, the adversary in-
teracting with Q cannot distinguish any element of the
array x from a uniformly distributed random number
by a single test query. The test query returns either
the desired element of x or a freshly generated random
number, and the adversary has to distinguish between

these two situations. (This notion of secrecy does not
guarantee that the random numbers in x are indepen-
dent.)

• A process Q preserves the secrecy of x when, with over-
whelming probability, the adversary interacting with Q
cannot distinguish the elements of the array x from in-
dependent, uniformly distributed random numbers. In
this notion of secrecy, the adversary can perform sev-
eral test queries on the various elements of the array x,
which either all return elements of x or all return in-
dependent random numbers. This corresponds to the
“real-or-random” definition of security [2]. (As shown
in [2], this notion is stronger than the more standard
approach in which the adversary can perform a single
test query and some reveal queries, which always reveal
an element of x.)

When the array x contains a single element (that is, x is
defined under no replication), the notions of one-session se-
crecy and of secrecy are equivalent. The one-session secrecy
of x is coded in CryptoVerif by the query secret1 x, while
the secrecy of x is coded by secret x. The formal definitions
of these two notions can be found in [11].

4. RESULTS
We have used CryptoVerif 1.06pl3 to prove secrecy and

authentication properties for Kerberos (with and without
PKINIT). In the following we will first discuss the assump-
tions on the cryptographic primitives used in our Cryp-
toVerif proofs, and then present the authentication and se-
crecy results.

The main challenges we faced in achieving the results be-
low were the following:

• The user needs to know the process calculus well enough
to understand how exactly CryptoVerif applies the se-
curity of cryptographic primitives and to be able to read
the last game of a CryptoVerif proof (which is not triv-
ial and needs some practice). The latter is particularly
important for interactive proofs.

• The user must know the underlying cryptography well
enough to be able to specify the security of crypto-
graphic primitives through indistinguishable oracles, al-
though many primitives have already been specified in
previous examples [11] and the user can copy them from
there.

Furthermore, we note that Kerberos is a well-studied pro-
tocol and we found the previous work on Kerberos 5 [17,
19, 4] very valuable, as it gave us a good sense for which
results we could expect to be verified by CryptoVerif in the
computational model. This helped us, in cases in which we
initially could not verify an expected property, to narrow
down the cause—mostly issues with the underlying cryptog-
raphy but, in rare cases, also issues with CryptoVerif itself
(see also Section 4.5).

4.1 Cryptographic Assumptions
In our analysis, the public-key encryption scheme is as-

sumed to be indistinguishable under adaptive chosen ci-
phertext attacks (IND-CCA2), and the signature scheme is
assumed to be unforgeable under chosen message attacks
(UF-CMA). Symmetric encryption is assumed to be indis-
tinguishable under chosen plaintext attacks (IND-CPA) and

to satisfy ciphertext integrity (INT-CTXT). These proper-
ties guarantee indistinguishability under adaptive chosen ci-
phertext attacks (IND-CCA2), as shown in [9]. These as-
sumptions are the same as in [4], and Boldyreva and Kumar
showed in [16] that the encryption of the simplified profile of
basic Kerberos satisfies these properties for symmetric en-
cryption. They also showed that the general profile encryp-
tion is weak, and propose a corrected version of the general
profile encryption that satisfies these properties.

The keyed hash function used to compute the check-
sum in PKINIT is assumed to be a message authentica-
tion code, weakly unforgeable under chosen message attacks
(UF-CMA), which is in accordance with [8] and which also
matches the assumptions in [4]. As it is unwise to use
the same key for multiple cryptographic operations, a key
derivation function is used to generate multiple keys from a
base key; this key derivation function takes as input the base
key and publicly known integer called usage number [35].
We assume that the key derivation function is a pseudo-
random function and use it to derive, from a base key, a
key for the message authentication code and another key for
the encryption of the message component that includes the
authentication key for the client (denoted k in Figure 2).
We note that in the specifications [23, 34] a key derivation
function is used not only for the key mentioned above but
for all symmetric keys (even if they are not used for multiple
cryptographic operations); we, however, restrict the use of a
key derivation function to the key above. Implementing the
use of a key derivation function for all symmetric keys will
be part of future work.

For basic Kerberos, we assume that the long-term key kC

shared between the client and the KAS is generated from a
random seed, although in practice this key is usually gen-
erated from a password and is vulnerable to dictionary at-
tacks [10].

Furthermore, we assume that concatenations of some
types of bitstrings (e.g., a key followed by a timestamp fol-
lowed by a client name) cannot be confused with other such
concatenations (e.g., a key followed by a nonce followed by
a timestamp followed by a TGS name). The assumptions of
this type that we make are justifiable in view of the differ-
ences between the various Kerberos data structures.

4.2 Authentication Results
Here we present authentication properties directly proved

in the computational model by CryptoVerif 1.06pl3 under
the assumptions from Section 4.1.

We formalize Property 1(a) as the following theorem.

Theorem 1 (Authentication of KAS to client) In
basic and public-key Kerberos, for each instance of:

• an honest client C completing the AS exchange with
KAS K,

• in which the client sent the request mreq to receive a
TGT for the use with honest TGS T ,

• received what appears to be a valid reply m′
rep

there exists, with overwhelming probability, a distinct corre-
sponding instance of:

• the KAS completing the AS exchange with C,

• in which the KAS received the request mreq for a TGT
for the use between C and T ,

!i
′≤n′′

new r : keyseed;

(!i≤n(x : maxenc) → new r′ : seed; enc(x, kgen(r), r′),

!i≤n′
(y : bitstring) → dec(y, kgen(r)))

≈ !i
′≤n′′

new r : keyseed;

(!i≤n(x : maxenc) → new r′ : seed;

let z : bitstring = enc(x, kgen′(r), r′) in z,

!i≤n′
(y : bitstring) →

find j ≤ n suchthat defined(x[j], z[j]) ∧ z[j] = y

then injbot(x[j]) else ⊥
(INT-CTXT)

!i
′≤n′

new r : keyseed; !i≤n(x : maxenc) →
new r′ : seed; enc(x, kgen′(r), r′)

≈ !i
′≤n′

new r : keyseed; !i≤n(x : maxenc) →
new r′ : seed; enc′(Z(x), kgen′(r), r′)

(IND-CPA)

Figure 4: Definition of INT-CTXT and IND-CPA
symmetric encryption in CryptoVerif

• sent reply mrep, where all message components of mrep,
except the TGT, are equal to the corresponding compo-
nents in m′

rep.

Proof. Basic Kerberos case: when the client process
completes its participation in an AS exchange, it executes an
event fullCK (hostT , n1,TGT , m2) that contains the name
hostT of the TGS and the nonce n1 from the client’s first
message, and the reply from K in TGT and m2, where m2 is
the reply component encrypted under C’s long-term shared
key and TGT is assumed to be a ticket granting ticket.
When the KAS process completes its participation in an
AS exchange, it executes an event fullKC (hostY , hostW , n′1,
TGT ′, e4) that contains the name hostY of the client, the
name hostW of the TGS and the nonce n′1 listed in the re-
quest. Furthermore, it contains ticket granting ticket TGT ′

generated by the KAS containing the authentication key
AK ′, and the reply component e4 encrypted under hostY ’s
long-term shared key. CryptoVerif can then automatically
prove the query: inj-event(fullCK (T, n, x, y)) ⇒

inj-event(fullKC (C, T, n, z, y)).
The proof done by CryptoVerif consists essentially in ap-

plying, after some minor simplifications, the security as-
sumptions on symmetric key encryption for each key kS , kT ,
and kC . In more detail, CryptoVerif performs the following
transformations:

• It removes assignments on kS , that is, it replaces kS with
its value kgen(rKs): kS is generated from a random seed
rKs by the key generation algorithm kgen.

• The variable Pkey is assigned at two places in the game,
either with the key kS = kgen(rKs), when T and S are
honest, or with a key coming from the adversary. Cryp-
toVerif renames these two assignments to Pkey to dis-
tinct names Pkey 88 and Pkey 87 respectively, which
leads to distinguishing two cases, depending on whether
Pkey is shared between honest T and S or not.

• CryptoVerif removes assignments on Pkey 88 , that is,

it replaces Pkey 88 with its value kgen(rKs).

• CryptoVerif applies the INT-CTXT property of the
symmetric encryption on the key kS = kgen(rKs). The
INT-CTXT property is represented in CryptoVerif by
the equivalence (INT-CTXT) of Figure 4. In this equiv-
alence, the left-hand side chooses a random seed r and
provides two oracles: the first one encrypts its argument
x under key kgen(r) generated from r, using fresh coins
r′; the second one decrypts its argument y with key
kgen(r). The right-hand side provides two correspond-
ing oracles: the first one still encrypts under kgen(r),
but additionally stores the ciphertext in the variable z.
This variable is implicitly an array indexed by the num-
ber of the call to the encryption oracle. The second
oracle, instead of decrypting its argument y, looks for y
in the array z that contains all computed ciphertexts.
When y is found in this array, that is, there exists j
such that z[j] = y, the oracle returns the corresponding
plaintext x[j], injected by i⊥ into the set of bitstrings
union the special symbol ⊥. When no such y is found,
the oracle returns ⊥, meaning that decryption failed.
Ciphertext integrity implies that the left-hand side and
the right-hand side are indistinguishable for an attacker:
with overwhelming probability, the attacker is unable to
produce a valid ciphertext without calling the encryp-
tion oracle, so the valid ciphertexts are those stored in
z and decryption succeeds if and only if the ciphertext
is found in the array z.

Using this equivalence, CryptoVerif can transform a
game by replacing the left-hand side of the equiv-
alence with its right-hand side as follows: provided
rKs is a random number used only in terms of the
form enc(M, kgen(rKs), r′) for a fresh random number
r′ and dec(M ′, kgen(rKs)), it replaces occurrences of
enc(M, kgen(rKs), r′) with let x = M in let z = enc(x,
kgen′(rKs), r′) in z for some new variables x and z, and
dec(M ′, kgen(rKs)) with a lookup that looks for M ′ in
all variables z and returns the corresponding value of
injbot(x) in case of success and ⊥ in case of failure.
(The previous game transformations were useful in or-
der to make terms of the form enc(M, kgen(rKs), r′) and
dec(M ′, kgen(rKs)) appear.)

As a final technical detail, the right-hand side of the
equivalence uses the function symbol kgen′ instead of
kgen: this prevents repeated application of the game
transformation since after transformation, terms of the
form enc(x, kgen(r), r′) are no longer found.

• After each cryptographic transformation, the game
is simplified. CryptoVerif uses essentially equational
reasoning to replace terms with simpler terms and
tries to determine the result of tests, thus removes
branches that cannot be executed. In particular, if
the initial game contained a statement of the form
let injbot(concat2(SK , tt , hostC)) = dec(M, kS) in . . .,
the decryption has been replaced by a lookup that re-
turns plaintexts, so simplification can then select only
the branche(s) of the lookup that return a value that
can be equal to i⊥(concat2(SK , tt , hostC)).

The simplification also removes collisions between ran-
dom numbers: for instance, when a test requires that
two independent random nonces are equal, this test fails
with overwhelming probability.

• CryptoVerif applies the IND-CPA property of the sym-
metric encryption on the key kS = kgen(rKs). The
IND-CPA property is represented in CryptoVerif by the
equivalence (IND-CPA) of Figure 4. This equivalence
expresses that the oracle that encrypts x is indistin-
guishable from an oracle that encrypts Z(x), where Z(x)
represents a bitstring of zeroes, of the same length as x.
This property is implied by IND-CPA.

CryptoVerif will then replace terms enc(M, kgen′(rKs),
r′) with enc′(Z(M), kgen′(rKs), r′), provided rKs is a
random number occuring only in such terms and r′ is a
fresh random number.

The right-hand side uses enc′ instead of enc to prevent
repeated application of the game transformation.

• After applying this transformation, the game is simpli-
fied. In particular, terms of the form Z(M) are sim-
plified to constants when the length of M is constant,
which removes the dependency on M .

CryptoVerif then applies similar steps for keys kT and kC .
After applying the INT-CTXT property for kC , it succeeds
proving the desired correspondence.

The probability P (t) that an attacker running in time t
breaks the correspondence inj-event(fullCK (T, n, x, y)) ⇒
inj-event(fullKC (C, T, n, z, y)) is bounded by CryptoVerif

by P (t) ≤ N2

2 |nonce| + N
|nonce| + PINT-CTXT(t + tC1, N, N) +

PIND-CPA(t + tC2, N) + PINT-CTXT(t + tC3, N, N) +
PIND-CPA(t + tC4, N) + PINT-CTXT(t + tC5, N, N) where
N is the maximum number of sessions of the protocol
participants, |nonce| is the cardinal of the set of nonces,
PINT-CTXT(t, n, n′) is the probability that an attacker
running in time t breaks the INT-CTXT equivalence with
at most n calls to the encryption oracle and n′ calls to the
decryption oracle (for one encryption key), PINT-CPA(t, n) is
the probability that an attacker running in time t breaks the
IND-CPA equivalence with at most n calls to the encryption
oracle, and tC1, tC2, tC3, tC4, and tC5 are bounds on the
running time of the part of the transformed games not
included in the INT-CTXT or IND-CPA equivalence, which
are therefore considered as part of the attacker against the
INT-CTXT or IND-CPA equivalence. The first two terms
of P (t) come from elimination of collisions between nonces,
while the other terms come from cryptographic transfor-
mations using the INT-CTXT or IND-CPA properties of
encryption for keys kS , kT , and kC . (Only the INT-CTXT
property is used for kC .)

Note that, if CryptoVerif applied the INT-CTXT prop-
erty of encryption on key kC first, it would prove the
query without needing the security of encryption for kS and
kT , and with a tighter bound on the probability P (t) ≤

N2

2 |nonce| + N
|nonce| + PINT-CTXT(t + t′C1, N, N). This proof

can be obtained by manually giving to CryptoVerif the in-
struction crypto dec rKc, which instructs it to apply the
INT-CTXT equivalence (the only equivalence that has the
dec symbol in its left-hand side) to the key generated from
rKc. CryptoVerif automatically guesses the few syntactic
transformations that it has to do before applying this equiv-
alence.

Public-key Kerberos case: when the client process com-
pletes its participation in PKINIT, it executes an event
fullCK (hostZ , hostT , n1,m21 ,TGT ,m24) that contains the
name hostZ of the KAS, the name hostT of the TGS and
the unsigned nonce n1 from the client’s first message. Fur-

thermore, it contains the reply from hostZ in m21 , TGT ,
and m24 , where m21 is the part of the reply encrypted un-
der C’s public key and m24 is the reply component that
contains the authentication key (AK). When the KAS pro-
cess completes its participation in PKINIT, it executes an
event fullKC (hostY , hostW , n′1, e21 ,TGT ′, e24) that con-
tains the name hostY of the client, the name hostW of the
TGS and the unsigned nonce n′1 listed in the request. Fur-
thermore, it contains the public-key encryption component
e21 of K’s reply (under hostY ’s public key), the ticket grant-
ing ticket TGT ′ generated by the KAS containing the au-
thentication key (AK ′), and the reply component e24 that
contains the authentication key. CryptoVerif can then prove
the query: inj-event(fullCK (K, T, n, w, x, y)) ⇒

inj-event(fullKC (C, T, n, w, z, y)).
We note that the proof for the public-key Kerberos case

is an interactive proof which uses the following commands:
crypto sign rkCA, crypto sign rkCs, crypto penc rkC,
crypto sign rkKs, crypto keyderivation, simplify,
crypto keyderivation, simplify, and auto. (The com-
mands are given in typeface and separated by commas; the
ith command is given on the ith occasion that CryptoVerif
requests user input.) The command crypto sign rkCA

instructs CryptoVerif to transform the game using the
security of the signature for the keys generated from the
random number rkCA. In this case, rkCA was used to
generate the signature key of the certificate authority
who signed the certificates of the client and the KAS.
Similarly, rkCs and rkKs generated the signature keys of
the client and the KAS, respectively. The command crypto

penc rkC instructs CryptoVerif to apply the security for
the client’s public-key encryption key generated by the
random number rkC to transform the game. The command
crypto keyderivation instructs CryptoVerif to make a
game transformation by applying the security of the key
derivation function (i.e., pseudo randomness), and the
command simplify instructs CryptoVerif to apply the
build-in simplification algorithm to the current game. The
command auto instructs CryptoVerif to continue the proof
automatically, using its built-in proof strategy.

Theorems 2–5 below can be proved in a similar way. We
detail the proof of Theorem 4 as a second example, and omit
the other proofs because of length constraints.

We formalize Property 1(b) as the following theorem.

Theorem 2 (Authentication of request for ST) In
basic and public-key Kerberos, if there is an instance of:

• an honest TGS T receiving a valid request mreq for a
service ticket from an honest client C

then, with overwhelming probability, there is an instance
of:

• the KAS completing an AS exchange with C,

• in which the KAS generated the ticket granting ticket for
the use between C and T , which equals the one contained
in mreq,

and an instance of:

• the client C requesting a service ticket from T ,

• in which C sent the authenticator, which equals the one
contained in mreq.

We formalize Property 1(c) as the following theorem.

Theorem 3 (Authentication of TGS to client) In
basic and public-key Kerberos, for each instance of:

• an honest client C completing a TG exchange with an
honest TGS T

• in which the client sent the request mreq to receive a
service ticket ST for the use with honest server S,

• received what appears to be a valid reply m′
rep

there exist, with overwhelming probability, a distinct corre-
sponding instance of:

• the TGS T completing a TG exchange with client C

• in which the TGS received the request m′
req for a ST for

the use between C and S,

• sent reply mrep, where the message component of mrep

encrypted under the authentication key, which contains
the service key SK, is equal to the corresponding com-
ponent in m′

rep.

We formalize Property 1(d) as the following theorem.

Theorem 4 (Authentication of request to server)
In basic and public-key Kerberos, if there is an instance
of:

• an honest server S receiving a valid request mreq from
an honest client C

then, with overwhelming probability, there is an instance
of:

• the TGS completing a TG exchange with C,

• in which the TGS generated a service ticket contained
for the use between C and S, which is equal to the one
in mreq

and an instance of:

• the client C sending an authentication requesting a ser-
vice from S,

• in which C sent an authenticator, which is equal to the
one contained in mreq.

Proof. Basic Kerberos case: when the server process
validates a received request in a CS exchange, it executes
an event partSC (hostC ,m14 ,m15) that contains the name
hostC of the client contained in the ST, the ST itself in m14 ,
and the matching authenticator in m15 . When the TGS
process completes its participation in a TG exchange, it ex-
ecutes an event fullTC (hostY , hostW , n′,m8 ,m9 ,ST ′, e11)
that contains the name hostY of the client, the name hostW
of the server, the nonce n′, the TGT m8 , and the authenti-
cator m9 , which were all listed in the request m′

req. Further-
more, the event contains the service ticket ST ′ generated by
the TGS containing the service key SK ′, and the message
component e11 of the reply that is encrypted under the au-
thentication key. When the client process sends a request
to a server, it executes an event partCS(hostX , hostY ,ST ,
e12) that contains the name hostX of the TGS from which
the client requested a service ticket, the name hostY of the
server, the alleged ST in ST , and the authenticator sent by
C in e12 containing C’s name and a timestamp encrypted
under the service key SK , which C received in the same TS
reply as TGT . CryptoVerif can then automatically prove
the query: event(partSC (C, z, y)) ⇒
event(partCS(S, T, x, y)) ∧ event(fullTC (C, S, n, v, v′, z, w)).

Public-key Kerberos case: As the CS exchange in public-
key Kerberos does not differ from the CS exchange in

basic Kerberos V5, the events partSC (hostC ,m14 ,m15),
partCS(hostX , hostY ,ST , e12), and fullTC (hostY , hostW ,
n′,m8 ,m9 ,ST ′, e11) are just as the ones described above
in the basic Kerberos case. CryptoVerif can then prove the
same query as above in basic Kerberos case using the same
commands as in the public-key Kerberos case from Theo-
rem 1.

We formalize Property 1(e) as the following theorem.

Theorem 5 (Authentication of server to client) In
basic and public-key Kerberos, if there is an instance of:

• an honest client C completing a CS exchange with an
honest server S

• in which the client sent the request mreq,
• received a valid reply mrep

then, with overwhelming probability, there is an instance
of

• the server S completing a CS exchange with client C
• in which the TGS received the request m′

req

• sent the reply mrep.

We note that the injectivity of the correspondences in
Theorems 1 and 3 stems from their challenge-response char-
acter; i.e., a fresh nonce is sent and subsequently received.
The correspondences in Theorems 2 and 4 are non-injective
because the 3rd and 5th messages of Kerberos, respectively,
can be replayed. In practice, however, the server should
use an anti-replay cache in order to prevent the replay of
the 5th message [34]; we do not yet include this cache in
our model, but doing so in the future may allow us to show
that each instance of the server corresponds to a distinct
instance of the client in Theorem 4. The reason for the non-
injectivity of the correspondence in Theorem 5, however, is a
little different and has to do with how we model timestamps
in CryptoVerif. If the client C sends two requests to the
server S with the same timestamp t′C , then the adversary
can prevent the second request from reaching S and replay
S’s reply to the first request as reply for the second request.
In this case, two sessions of the client correspond to a single
session of the server, so the correspondence is non-injective.
Our model in CryptoVerif allows the timestamps of several
requests to be equal with non-negligible probability, as in the
above scenario. However, this is rather unlikely to happen
in the real world, since the timestamps have a 1 µs resolu-
tion. If we treat timestamps as nonces, which can be equal
only with negligible probability, then the correspondence of
Theorem 5 can be shown to be injective (but timestamps
are then considered as unguessable).

Remark 1 CryptoVerif can prove all correspondences for
basic Kerberos mentioned in Theorems 1–5 simultaneously,
using a single sequence of games, and likewise it can prove
the correspondences for public-key Kerberos simultaneously,
using the same interactive commands.

4.3 Key Secrecy Results
In the following we present the key secrecy results

we proved in the computational model using CryptoVerif
1.06pl3 under the assumptions from Section 4.1. First we
will discuss key indistinguishability results and then we will
discuss key secrecy results with respect to the notion of key
usability, introduced in [21] and generalized here.

4.3.1 Key Indistinguishability
The key secrecy results in this section are proved with re-

spect to the real-or-random definition of security, which is
a stronger notion than the standard notion from the litera-
ture [2]. We note that, as discussed in [4], the authentication
keys and the service keys in Kerberos become distinguish-
able from random as soon as they are used for encryption
during the protocol and the resulting ciphertext is broad-
casted on the network, i.e., right after the second and third
round respectively, since they are used for encryption of a
partially known message (namely, the client’s name and a
timestamp).

We formalize Property 2(a) as the following theorem. We
omit its proof and detail only the proof of the more impor-
tant result on secrecy of SK (Theorem 7 below), which is
similar.

Theorem 6 (Secrecy of AK) Let QK51R be the game in
the process calculus formalizing solely the AS exchange of
basic Kerberos and let QPKINIT be the game formalizing the
public-key mode of PKINIT. Furthermore, let keyAK de-
note in QK51R and in QPKINIT , respectively, the authenti-
cation key received by an honest client from the KAS and
generated by the KAS for the use between the client and an
honest TGS. Then QK51R and QPKINIT preserve the secrecy
of keyAK.

Remark 2 For the flawed draft version of PKINIT, Cryp-
toVerif was not able to produce a positive proof of either the
secrecy of the key AK or the authentication of K to C. In
fact, neither property holds for the flawed protocol, due to
a known attack [19].

We formalize Property 2(b) as the following theorem.

Theorem 7 (Secrecy of SK) Let QK52R be the game in
the process calculus formalizing the AS and the TG exchange
(i.e., the first two rounds) of basic Kerberos and let QPK2R

be the game formalizing the first two rounds of public-key
Kerberos. Furthermore, let keySK denote in QK52R and in
QPK2R , respectively, the service key received by an honest
client from an honest TGS and generated by the TGS for
the use between the client and an honest server. Then QK52R

and QPK2R preserve the secrecy of keySK.

Proof. For both basic Kerberos and public-key Kerberos:
when the client process completes its participation in a TG
exchange with an honest TGS it stores the session key SK in
keySK . CryptoVerif can then prove the query: secret keySK ,
where in the public-key Kerberos case, the same commands
as in the public-key Kerberos case from Theorem 1 are
used.

We note that cryptographic secrecy, i.e., indistinguisha-
bility from random, which follows for the keys AK and SK
from Theorems 6 and 7, respectively, does not hold any
longer once AK is used in a TS request or SK is used in
a CS request, as shown in [4]. This is due to the fact that
AK and SK are used to encrypt the authenticators in the
TG and CS exchange, respectively, which contain a par-
tially known plaintext; namely the client name and a times-
tamp which was generated during a bounded time period
that is typically known to the adversary. If an adversary
tries to distinguish either AK or SK from random keys, he

just needs to attempt to decrypt the appropriate authenti-
cator and makes his guess dependent on whether the adver-
sary sees the client’s name and a timestamp generated in
the bounded time period or not. This gives the adversary
an overwhelming advantage of guessing correctly. However,
Kerberos allows for the generation of an optional sub-session
key [34], which is intended for the encryption of subsequent
communication (instead of the session key). This optional
sub-session key may be generated by either the client or the
server in the CS exchange and included in the message which
the client or the server send to each other encrypted under
the session key. In [4] it was noted that the optional sub-
session key satisfies the notion of cryptographic key secrecy,
independent of whether it is generated by the client or the
server.

Theorem 8 (Secrecy of Optional Sub-Session Key)

Let QOpt,C
K5 and QOpt,C

PK be the games in the process calculus
formalizing basic Kerberos and public-key Kerberos, where
in both cases an optional subsession key is generated by the
client. And let QOpt,S

K5 and QOpt,S
PK be the games in the process

calculus formalizing basic Kerberos and public-key Kerberos,
when an optional subsession key is generated by the server.
If OPkeyC and OPkeyS denote in all cases the sub-session
keys an honest client and an honest server, respectively, pos-
sess after having communicated via a Kerberos session in-
volving an honest TGS, then

• QOpt,C
K5 and QOpt,C

PK preserve the secrecy of OPkeyC and
the one-session secrecy of OPkeyS.

• QOpt,S
K5 and QOpt,S

PK preserve the secrecy of OPkeyS and
the one-session secrecy of OPkeyC .

Proof. For both basic Kerberos and public-key Kerberos:
when the client process completes its participation in a CS
exchange with an honest server and involving an honest
TGS it stores the optional sub-session key in OPkeyC , and,
likewise, the server process stores the optional sub-session
key in OPkeyS . If the optional sub-session key is gener-
ated by the server, then CryptoVerif can prove the queries:
secret1 OPkeyC and secret OPkeyS , if the commands in the
public-key Kerberos case are the same as in the proof of
Theorem 1. The appropriate queries are proved by Cryp-
toVerif if the optional sub-session key is generated by the
client.

In order to understand why CryptoVerif can in some in-
stances only prove one-session secrecy but not secrecy, we
distinguish the cases in which a server receives an optional
sub-session key generated by the client from the cases in
which the client receives a sub-session key generated by a
server. In the first case, an adversary can force the server
to accept the same sub-session key in multiple sessions that
use the same session key SK , by replaying the 5th message
of Kerberos. This replay allows an adversary to distinguish
these sub-session keys from independent random keys. How-
ever, in practice, this replay should be prevented by an anti-
replay cache of the server [34], which is not included in our
model. The second case stems, again, from the fact that our
CryptoVerif model allows two timestamps to be equal with
a non-neglible probability (see discussion at the end of Sec-
tion 4.2). This makes it possible for an adversary to launch
a similar attack as above by replaying the response from a
server in multiple sessions that use the same key SK and
the same timestamp t′C . If we treat timestamps as nonces

so that two timestamps can be equal only with a negligi-
ble probability, then CryptoVerif can prove secrecy of the
sub-session in the second case.

4.3.2 Key Usability
Weaker than key indistinguishability, the notion of key

usability [21] aims to capture whether an exchanged key, al-
though possibly not indistinguishable from random, is still
“good”to be used subsequently for certain cryptographic op-
erations, e.g., IND-CCA secure encryption. An exchanged
key, which is indistinguishable from random, can be used
just as a freshly generated key for any cryptographic opera-
tions. This notion, however, could sometimes be considered
as a too strong since, e.g., keys that are used for encryption
of a partially known payload during a key exchange protocol,
as is the case in Kerberos, involuntarily become distinguish-
able. Nonetheless, a dinstinguishable key may still be usable
and leave an adversary with an at most negligible advantage
at winning, e.g., an IND-CCA attack game.

Paralleling the definition of key indistinguishability, the
definition of key usability by Datta et al. [21] involves a
two-phase attacker A = (Ae,Ac). Informally, given a key
exchange protocol Σ and a class of applications S, in the key
exchange phase, honest parties first run (multiple) sessions
of the protocol over a network that is controlled by Ae. Af-
terwards the attacker Ae chooses a session and hands the
session id together with the information she collected over
to Ac. Now the challenge phase begins where Ac is trying
to win an attack game against a scheme Π ∈ S which uses
keys from the session previously picked by Ae. The syntax
of the process calculus used by CryptoVerif does not allow
us to formalize a sequence consisting of an exchange phase
followed by an challenge phase, nor does it allow us to di-
rectly formalize a two-phase attacker who picks a session ID
and its key to play the attack game against. Therefore we
use an ‘auxiliary construction’ to prove key usability results
for Kerberos using CryptoVerif, which in fact enables us to
prove a stronger version of key usability in the case of Ker-
beros, as we describe in the following, and which, therefore,
may contribute to future discussions on the notion of key us-
ability. Our construction involves two aspects that address
the syntactical obstacles mentioned above: Firstly, the syn-
tax of the process calculus used by CryptoVerif forces us
to let the processes formalizing the exchange phase and the
challenge phase run in parallel, i.e., an attacker playing, e.g.,
an IND-CCA2 game against a symmetric encryption scheme
which uses the session key SK , is still able to interact with
Kerberos protocol sessions and could utilize these protocol
sessions in order to win the IND-CCA2 attack game. How-
ever, we make some restriction in definition 1 below which
implies, for instance, that if the adversary is trying to win an
IND-CCA2 attack game against the symmetric encryption
scheme under the cryptographic assumptions in Section 4.1
using the session key SK , then we do not allow the adver-
sary to send any output of the encryption oracle to sessions
of the honest protocol principals that are carrying out the
CS exchange (i.e., the third round). Secondly, instead of
letting the adversary choose the session ID and the key for
the attack game, the key is drawn at random from the poly-
nomially many sessions and keys.

Definition 1 (Strong Key Usability) Let Π =
(K, E ,D) ∈ S be a symmetric encryption scheme, b ∈ {0, 1},

Σ a key exchange protocol, and A an adversary. We
consider the following experiment Exp∗b

A,Σ,Π(η):

• First, A is given the security parameter η and A can
interact, as an active adversary, with polynomially many
protocol sessions of Σ.

• At some point, at the request of A, a session identifier
sid is drawn at random and A is given access to a left-
right encryption oracle Ek(LR(., ., b)) and an decryption
oracle Dk(.) both keyed with a key k locally output in
session sid.

• Adversary A plays a variant of an IND-CCA2 game
– where A submits same-length message pairs (m0,

m1) to Ek(LR(., ., b)), which returns Ek(mb),
– A never queries Dk(.) on a ciphertext output by
Ek(LR(., ., b)),

– and A may interact with uncompleted protocol ses-
sions,

– all sessions of the protocol do not accept ciphertexts
output by the encryption oracle when they reach a
point of the protocol at which at least one session
expects to receive a message encrypted under the
key k.

• At some point, A outputs a guess bit d, which is also
the output of the experiment.

We define the advantage of an adversary A by Adv∗ke
A,Σ,Π =

|Pr(Exp∗1
A,Σ,Π(η) = 1) − Pr(Exp∗0

A,Σ,Π(η) = 1)| and say
that keys exchanged through protocol Σ are strongly usable
for schemes in S if for all Π ∈ S and any probabilistic,
polynomial-time adversary A, the advantage Adv∗ke

A,Σ,Π is
negligible.

It is clear that allowing the adversary to interact with pro-
tocol sessions during the attack game gives the adversary
more power compared to a two-phase attacker as in [21].
Not letting the adversary pick the session ID (which corre-
sponds to a replication index in CryptoVerif’s process calcu-
lus), on the other hand, restricts the adversary’s capabilities.
However, since the number of sessions is polynomial (in the
security parameter), a non-negligible advantage of winning
an attack game for a two-phase adversary as in [21] implies
a non-negligible advantage for the adversary we described
above.

Furthermore, an attacker in [21] may be more restricted
than necessary in order to model many realistic settings.
For instance, if a key k is exchanged through protocol Σ1

to be used in an application protocol Σ2, then usability of
k with respect to the definition in [21] guarantees k to be
good for, say, encryption in Σ2 under the condition that all
users on the network stop running protocol Σ1, which is gen-
erally not very realistic. On the other hand, if one requires
that messages encrypted under k during a run of Σ1 differ
syntactically from messages encrypted in Σ2 then messages
encrypted under k in Σ2 will be rejected from participants
of Σ1. Therefore a restriction on the adversary like the one
in definition 1 could be realized and k can be securely used
in Σ2 if it satisfies strong key usability. This example sug-
gests yet another definition of key usability; one which comes
with a composition theorem for protocols Σ1 and Σ2. We
intend to explore in subsequent work such a variant defini-
tion of key usability and how one could utilize CryptoVerif
to prove that an exchanged key satisfies that notion.

We formalize Property 2(c) as the following theorem. We
omit its proof and detail only the proof of the more impor-

tant result on usability of SK (Theorem 11 below), which is
similar.

Theorem 9 (Usability of AK) Let QAK ,use
Σ,X be the

game in the process calculus formalizing the experiment
Exp∗b1

A,Σ,Π(η), where Σ is basic or public-key Kerberos in-
volving client C, TGS T , and KAS K, Π is the symmet-
ric encryption scheme of Kerberos, and the left-right oracle
uses an authentication key AK that was locally output after
a completed process of X ∈ {C, T, K}. If C, T , and K are

honest, then QAK ,use
Σ,X preserves the secrecy of b1 .

Corollary 10 Basic and public-key Kerberos satisfy IND-
CCA2 (strong) key usability for the authentication key AK,
for the symmetric encryption scheme of Kerberos.

We formalize Property 2(d) as the following theorem.

Theorem 11 (Usability of SK) Let QSK ,use
Σ,X be the

game in the process calculus formalizing the experiment
Exp∗b1

A,Σ,Π(η), where Σ is basic or public-key Kerberos in-
volving client C, KAS K, TGS T , and server S, Π is the
symmetric encryption scheme of Kerberos, and the left-right
oracle uses an authentication key SK that was locally output
after a completed process of X ∈ {C, S, T}. If C, K, T , and

S are honest, then QSK ,use
Σ,X preserves the secrecy of b1 .

Corollary 12 Basic and public-key Kerberos satisfy IND-
CCA2 (strong) key usability for the service key SK, for the
symmetric encryption scheme of Kerberos.

Proof of Theorem 11. Basic Kerberos case: In the
case X = C, the client process completes its participation
in a CS exchange involving an honest TGS, it stores the
session key SK in keyCSK . From these keys one is drawn
at random and passed to the encryption oracle and decryp-
tion oracle. For the boolean b1 used by the encryption or-
acle, we can, using CryptoVerif, prove the query: secret b1 .
This proof requires the user to inspect the last game, which
CryptoVerif reaches upon the command auto, in order to
verify that terms that are dependent on b1 and which may
help an adversary in guessing b1 occur only in find branches
that are never executed. The case X = T is similar, where
the session key SK is stored in keyTSK after the TGS sent
the TS reply. And an analogous result holds for X = S,
where the proof requires the following commands before the
manual inspection of the last game: auto, SArename SK_33,
simplify, and auto (formatted and entered as described
above). The command SArename SK_33 is used when the
variable SK 33 is defined several times in the game. It in-
structs CryptoVerif to rename each definition of this variable
to a different name, which subsequently allows to distinguish
cases depending on the program point at which the variable
has been defined.

Public-key Kerberos case: analogously to the basic Ker-
beros case, the secrecy of the bit b1 can be concluded by
inspecting the last game that CryptoVerif reaches after a
sequence of commands. If X = C or X = T , the interactive
commands are just the ones from the public-key Kerberos
case of Theorem 1. If X = S, the secrecy of b1 can be con-
cluded after the sequence of commands: crypto sign rkCA,
crypto sign rkCs, crypto penc rkC, crypto sign rkKs,
crypto keyderivation, simplify, crypto keyderivation,
simplify, auto, SArename SK_55, simplify, and auto (for-
matted and entered as described above).

4.4 Varying the Strength of Cryptography
We observe that the symbolic proofs of security for Ker-

beros in, e.g., [17] do not rely on the secrecy of the encrypted
data within the authenticators ({C, tC}AK and {C, t′C}SK)
sent by the client to the TGS and end server. CryptoVerif is
also able to prove security properties for Kerberos without
relying on the secrecy of the authenticator data. In partic-
ular, we can modify CryptoVerif scripts so that the client
sends a second, unencrypted copy of the authenticator con-
tents alongside the authenticator and CryptoVerif can still
prove security properties for Kerberos. For the case that the
client sends a subsession key in the CS exchange authenti-
cator, we make this modification only in the TG exchange;
if the server sends the subsession key (but not the client),
then we may make this modification in both the TG and CS
exchanges. Using CryptoVerif, we can then prove the fol-
lowing theorem about authentication and secrecy when the
authenticator contents are leaked as just described.

Theorem 13 If

• the client sends the contents of the authenticator, unen-
crypted, along with the encrypted authenticator in both
the TG and CS exchanges when she does not include a
subsession key in the authenticator for the CS exchange;
or

• the client sends the contents of the authenticator, un-
encrypted, along with the encrypted authenticator in the
TG exchange only when she includes a subsession key
in the authenticator for the CS exchange

then Theorems 1–5 and 8 hold for both basic and public-key
Kerberos.

Proof. If we modify the CryptoVerif scripts to expose
the authenticator contents as described, CryptoVerif proves
the queries needed for proving Theorems 1–5 and 8; in the
case of public-key Kerberos, the interactive commands are
the same as before.

Similar results might be achieved by suitably relaxing the
assumptions about the encryption function used for the au-
thenticators. That, and studies of other ways in which the
cryptographic assumptions can be weakened without com-
promising the protocol, remains a topic of ongoing work.

4.5 Improvements of CryptoVerif
This case study enabled us to find and fix two bugs in

CryptoVerif, which did not affect the proof of simpler pro-
tocols of the literature on which it was previously tested.
This case study also led to an improvement in CryptoVerif
simplification algorithm, which was useful in order to han-
dle the pseudo-random key derivation function. It also sug-
gested future improvements of CryptoVerif that would make
it easier to use. In particular,

• Improvements in the proof strategy should allow us to
fully automate the proof in many more cases, in par-
ticular for public-key protocols. The prover should au-
tomatically distinguish cases in which the public key
belongs to a honest principal or to the adversary.

• CryptoVerif is sometimes sensitive to the ordering of
instructions, although the semantics of the game does
not depend on this ordering. This problem could be
solved by automatically moving let x = . . . and new x
instructions under tests (duplicating them if necessary);

this transformation would allow CryptoVerif to distin-
guish cases depending on which branch assigns x. (This
transformation is currently performed only for new.)

• An additional game transformation would be helpful in
order to prove some secrecy properties, in particular for
key usability: tests if b then P else P ′ should be trans-
formed into P when P and P ′ make indistinguishable
actions, which would allow us to prove the secrecy of
b. A first step would be to perform this transformation
when P and P ′ are equal up to renaming of variables.

5. CONCLUSIONS
We have formalized and mechanically analyzed all three

rounds of the Kerberos 5 protocol, both with and without
its public-key extension PKINIT, using version 1.06pl3 of
the CryptoVerif tool. This is the first mechanical security
proof of an industrial protocol at the computational level.
The success of CryptoVerif in proving security properties
for Kerberos—and especially for PKINIT, the use of which
makes Kerberos particularly complex—provides evidence of
its utility for analyzing industrial protocols. This also ex-
tends other work on analyzing Kerberos to include mechan-
ical analysis tools. In carrying out this work, we extended
the idea of key usability to a new notion of strong key usabil-
ity; this definition was helpful here, and we are interested in
exploring its utility elsewhere.

We are currently broadening our study of how the cryp-
tographic assumptions made here may be varied and how
CryptoVerif copes with such changes. From our work with
CryptoVerif thus far, we see that the use of this tool sharp-
ens the user’s understanding of the cryptographic subtleties
involved in a protocol.

In the present work we have verified that the authenti-
cation keys and session keys are strongly usable for IND-
CCA2 encryption. As the encryption scheme is assumed to
also guarantee INT-CTXT security, it would be interesting
to use CryptoVerif in order to find out whether the authen-
tication keys and session keys are also (strongly) usable for
INT-CTXT encryption.

Since the specifications of Kerberos and PKINIT [34, 23]
are actually more complicated than our formalization, we
would like utilize CryptoVerif on formalizations of basic and
public-key Kerberos that are closer to the specifications, e.g.,
by using a key derivation function for all symmetric keys.

Another area for future work is the mechanized analysis
of PKINIT’s Diffie-Hellman mode, which we did not study
here. As noted in [13], the language of equivalences used
by CryptoVerif will need to be extended in order to han-
dle Diffie-Hellman key exchange, so this problem holds both
theoretical and practical interest.

Acknowledgements. We are grateful to Michael Backes,
Ricardo Corin, John Mitchell, Kenny Paterson, and Arnab
Roy for helpful discussions.

6. REFERENCES
[1] M. Abadi and P. Rogaway. Reconciling two views of

cryptography (the computational soundness of formal
encryption). In First IFIP, volume 1872 of LNCS.
Springer, Aug. 2000.

[2] M. Abdalla, P.-A. Fouque, and D. Pointcheval.
Password-Based Authenticated Key Exchange in the

Three-Party Setting. IEE Proc. Information Security,
153(1), 2006.

[3] A. Armando et al. The Avispa tool for the automated
validation of internet security protocols and
applications. In CAV 2005, volume 3576 of LNCS.
Springer.

[4] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov,
and J.-K. Tsay. Cryptographically Sound Security
Proofs for Basic and Public-key Kerberos. In
ESORICS 2006, volume 4189 of LNCS. Springer,
September 2006.

[5] M. Backes, B. Pfitzmann, and M. Waidner. A
Composable Cryptographic Library with Nested
Operations. In CCS’03. ACM, 2003.

[6] G. Bella and L. C. Paulson. Using Isabelle to Prove
Properties of the Kerberos Authentication System. In
DIMACS’97, Workshop on Design and Formal
Verification of Security Protocols (CD-ROM), 1997.

[7] G. Bella and L. C. Paulson. Kerberos Version IV:
Inductive Analysis of the Secrecy Goals. In
ESORICS’98, volume 1485 of LNCS. Springer, 1998.

[8] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. In CRYPTO’96,
volume 1109 of LNCS. Springer, 1996.

[9] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of
the generic composition paradigm. In ASIACRYPT
2000, volume 1976 of LNCS. Springer, December 2000.

[10] S. M. Bellovin and M. Merritt. Limitations of the
Kerberos Authentication System. In USENIX
Conference Proceedings, Winter 1991.

[11] B. Blanchet. A computationally sound mechanized
prover for security protocols. IEEE Transactions on
Dependable and Secure Computing. To appear.
Technical report version available at
http://eprint.iacr.org/2005/401.

[12] B. Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. In CSFW-14, June 2001.

[13] B. Blanchet. A Computationally Sound Mechanized
Prover for Security Protocols. In IEEE Symposium on
Security and Privacy, May 2006.

[14] B. Blanchet. Computationally sound mechanized
proofs of correspondence assertions. In CSF 2007, July
2007.

[15] B. Blanchet and D. Pointcheval. Automated Security
Proofs with Sequences of Games. In CRYPTO 2006,
volume 4117 of LNCS. Springer, Aug. 2006.

[16] A. Boldyreva and V. Kumar. Provable-security
analysis of authenticated encryption in Kerberos. In
IEEE Symp. Security and Privacy, 2007.

[17] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov,
and C. Walstad. Formal Analysis of Kerberos 5.
Theoretical Computer Science, 367(1–2), 2006.

[18] R. Canetti and J. Herzog. Universally composable
symbolic analysis of mutual authentication and key
exchange protocols. In TCC’06, volume 3876 of LNCS.
Springer, March 2006.

[19] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay,
and C. Walstad. Breaking and fixing public-key
Kerberos. Information and Computation,
FCS-ARSPA’06 Special Issue. To appear.

[20] V. Cortier and B. Warinschi. Computationally sound,
automated proofs for security protocols. In ESOP’05,
volume 3444 of LNCS. Springer, Apr. 2005.

[21] A. Datta, J. Mitchell, and B. Warinschi.
Computationally Sound Compositional Logic for Key
Exchange Protocols. In CSFW’06, July 2006.

[22] C. He, M. Sundararajan, A. Datta, A. Derek, and
J. C. Mitchell. A modular correctness proof of TLS
and IEEE 802.11i. In CCS’05. ACM, November 2005.

[23] IETF. Public Key Cryptography for Initial
Authentication in Kerberos, 1996–2006. RFC 4556.
Preliminary versions available as a sequence of
Internet Drafts at http://tools.ietf.org/wg/
krb-wg/draft-ietf-cat-kerberos-pk-init/.

[24] A. D. Jaggard, A. Scedrov, and J.-K. Tsay.
Computationally Sound Mechanized Proof of PKINIT
for Kerberos. Abstract presented at FCC’07.

[25] P. Laud. Secrecy Types for a Simulatable
Cryptographic Library. In CCS 2005, May 2005.

[26] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and
A. Scedrov. A probabilistic poly-time framework for
protocol analysis. In CCS-5, November 1998.

[27] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and
A. Scedrov. Probabilistic polynomial-time equivalence
and security protocols. In FM’99, volume 1708 of
LNCS. Springer, Sept. 1999.

[28] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol using FDR. In TACAS’96,
volume 1055 of LNCS. Springer, 1996.

[29] C. Meadows. Analysis of the Internet Key Exchange
Protocol using the NRL Protocol Analyzer. In IEEE
Symp. Security and Privacy, 1999.

[30] C. A. Meadows. The NRL protocol analyzer: An
overview. Journal of Logic Programming, 26(2), 1996.

[31] Microsoft. Security Bulletin MS05-042.
http://www.microsoft.com/technet/security/

bulletin/MS05-042.mspx, August 2005.

[32] J. Mitchell, A. Ramanathan, A. Scedrov, and
V. Teague. A Probabilistic Polynomial-Time Process
Calculus for the Analysis of Cryptographic Protocols.
Theoretical Computer Science, 353(1–3), 2006.

[33] J. C. Mitchell, V. Shmatikov, and U. Stern.
Finite-State Analysis of SSL 3.0. In 7th USENIX
Security Symp., pages 201–216, 1998.

[34] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
Kerberos Network Authentication Service (V5), July
2005. http://www.ietf.org/rfc/rfc4120.

[35] K. Raeburn. Encryption and Checksum Specifications
for Kerberos 5.
http://www.ietf.org/rfc/rfc3961.txt, Feb. 2005.

[36] A. Roy, A. Datta, A. Derek, and J. C. Mitchell.
Inductive proofs of computational secrecy. In
ESORICS 2007, volume 4734 of LNCS. Springer,
Sept. 2007.

[37] A. Roy, A. Datta, and J. C. Mitchell. Formal proofs of
cryptographic security of Diffie-Hellman-based
protocols. In TGC’07, Nov. 2007. To appear.

[38] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner. Cryptographically Sound Theorem
Proving. In CSFW 2006, July 2006.

