
Mechanizing Game-Based Proofs of
Security Protocols

Bruno BLANCHET 1

INRIA, École Normale Supérieure, CNRS, Paris, France

Abstract. After a short introduction to the field of security protocol verification,
we present the automatic protocol verifier CryptoVerif. In contrast to most previ-
ous protocol verifiers, CryptoVerif does not rely on the Dolev-Yao model, but on
the computational model. It produces proofs presented as sequences of games, like
those manually done by cryptographers; these games are formalized in a probabilis-
tic process calculus. CryptoVerif provides a generic method for specifying security
properties of the cryptographic primitives. It can prove secrecy and correspondence
properties (including authentication). It produces proofs valid for any number of
sessions, in the presence of an active adversary. It also provides an explicit formula
for the probability of success of an attack against the protocol, as a function of the
probability of breaking each primitive and of the number of sessions.

Keywords. Security protocols; computational model; automatic proof; sequences
of games; process calculi.

Introduction

A security protocol is a program that guarantees security properties, such as the secrecy
of some piece of data, by relying on cryptographic primitives, such as encryption or sig-
natures. Security protocols make it possible to securely exchange data on insecure net-
works such as Internet. The design of security protocols is well-known to be error-prone.
This can be illustrated by the attack against the Needham-Schroeder public-key proto-
col [49] found by Lowe [46] 17 years after its publication. Errors in security protocols
can have serious consequences, such as loss of money in e-commerce. Furthermore, se-
curity errors cannot be detected by testing, since they appear only in the presence of a
malicious adversary. Therefore, one aims at proving that security protocols are correct.
Manual proofs are complex and error-prone, so formal methods can play an important
role by providing tools for proving security protocols correct or for finding attacks.

There exist two main models for analyzing security protocols:

• In the symbolic model, often called Dolev-Yao model [37], cryptographic prim-
itives are considered as perfect blackboxes, modeled by function symbols in an
algebra of terms, possibly with equations. Messages are terms on these primitives
and the adversary can compute only using these primitives.

1Corresponding Author: Bruno Blanchet, École Normale Supérieure, DI, 45 rue d’Ulm, 75005 Paris, France;
E-mail: blanchet@di.ens.fr

• In contrast, in the computational model, messages are bitstrings, cryptographic
primitives are functions from bitstrings to bitstrings, and the adversary is any
probabilistic Turing machine.

The computational model is close to the real execution of protocols, but the proofs are
usually manual and informal. The Dolev-Yao model is an abstract model that makes
it easier to build automatic verification tools, and many such tools exist: AVISPA [5],
FDR [46], and ProVerif [20], for instance. Hubert Comon-Lundh’s course will deal
with the verification of security protocols in this model. However, security proofs in the
Dolev-Yao model in general do not imply security in the computational model.

In order to mechanize proofs in the computational model, several approaches have
been considered.

• In the indirect approach, following the seminal paper by Abadi and Rogaway [1],
one shows the soundness of the Dolev-Yao model with respect to the computa-
tional model, that is, one proves that the security of a protocol in the Dolev-Yao
model implies its security in the computational model, modulo additional assump-
tions. Combining such a result with a Dolev-Yao automatic verifier, one obtains
automatic proofs of protocols in the computational model. This approach received
much interest [6, 8, 29, 31, 39, 47] and a tool [30] was developed based on [31]
to obtain computational proofs using the Dolev-Yao verifier AVISPA, for proto-
cols that rely on public-key encryption and signatures. However, this approach
has limitations: since the computational and Dolev-Yao models do not correspond
exactly, soundness requires additional hypotheses. (For example, key cycles have
to be excluded, or a specific security definition of encryption is needed [3].)
In a related approach, Backes, Pfitzmann, and Waidner [9–11] have designed
an abstract cryptographic library including symmetric and public-key encryp-
tion, message authentication codes, signatures, and nonces and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. This
framework has been used for a computationally-sound machine-checked proof of
the Needham-Schroeder-Lowe protocol [54].
Canetti [27] introduced the notion of universal composability. With Herzog [28],
they show how a Dolev-Yao-style symbolic analysis can be used to prove security
properties of protocols within the framework of universal composability, for a
restricted class of protocols using public-key encryption as only cryptographic
primitive. Then, they use the automatic Dolev-Yao verification tool Proverif [21]
for verifying protocols in this framework.

• Techniques used previously in the Dolev-Yao model have also been adapted in
order to obtain proofs in the computational model.
For instance, Datta, Derek, Mitchell, Shmatikov, and Turuani [35, 36] have
adapted the logic PCL (Protocol Composition Logic), first designed for proving
protocols in the Dolev-Yao model, to the computational model. Other computa-
tionally sound logics include CIL (Computational Indistinguishability Logic) [12]
and a specialized Hoare logic designed for proving asymmetric encryption
schemes in the random oracle model [32, 33].
Similarly, type systems [34, 43, 45, 53] can provide computational security guar-
antees. For instance, [43] handles shared-key and public-key encryption, with
an unbounded number of sessions. This system relies on the Backes-Pfitzmann-
Waidner library. A type inference algorithm is given in [7].

• In the direct approach, one aims at mechanizing proofs in the computational
model, without using a Dolev-Yao protocol verifier. Computational proofs made
by cryptographers are typically presented as sequences of games [18,52]: the ini-
tial game represents the protocol to prove; the goal is to show that the probability
of breaking a certain security property is negligible in this game. Intermediate
games are obtained each from the previous one by transformations such that the
difference of probability between consecutive games is negligible. The final game
is such that the desired probability is obviously negligible from the form of the
game. The desired probability is then negligible in the initial game. Halevi [38]
suggested to use tools for mechanizing these proofs, and several techniques have
been used for reaching this goal.
CryptoVerif [22–25], which will be the main topic of this course, is such a tool.
It generates proofs by sequences of games automatically or with little user inter-
action. The games are formalized in a probabilistic process calculus. CryptoVerif
provides a generic method for specifying security properties of many crypto-
graphic primitives. It proves secrecy and authentication properties. It also pro-
vides a bound on the probability of success of an attack. It considerably extends
early works by Laud [41, 42] which were limited either to passive adversaries or
to a single session of the protocol. More recently, Tšahhirov and Laud [44, 55]
developed a tool similar to CryptoVerif but that represents games by dependency
graphs; it handles only public-key and shared-key encryption and proves secrecy
properties.
The tool CertiCrypt [13, 15, 16, 26] enables the machine-checked construction
and verification of cryptographic proofs by sequences of games. It relies on the
general-purpose proof assistant Coq, which is widely believed to be correct. Easy-
Crypt [14] generates CertiCrypt proofs from proof sketches that formally repre-
sent the sequence of games and hints, which makes the tool easier to use. Nowak
et al. [4, 50, 51] follow a similar idea by providing Coq proofs for several basic
cryptographic primitives.

In the tool CryptoVerif, games are represented in a process calculus inspired by the
pi-calculus and by the calculi of [48] and of [43]. In this calculus, messages are bitstrings,
and cryptographic primitives are functions from bitstrings to bitstrings. The calculus has
a probabilistic semantics. The main tool for specifying security assumptions is observa-
tional equivalence: Q is observationally equivalent to Q′ up to probability p, Q ≈p Q′,
when the adversary has probability at most p of distinguishing Q from Q′. With respect
to previous calculi mentioned above, our calculus introduces an important novelty which
is key for the automatic proof of security protocols: the values of all variables during the
execution of a process are stored in arrays. For instance, x[i] is the value of x in the i-th
copy of the process that defines x. Arrays replace lists often used by cryptographers in
their manual proofs of protocols. For example, consider the standard security assumption
on a message authentication code (MAC). Informally, this assumption says that the ad-
versary has a negligible probability of forging a MAC, that is, that all correct MACs have
been computed by calling the MAC oracle (i.e., function). So, in cryptographic proofs,
one defines a list containing the arguments of calls to the MAC oracle, and when veri-
fying a MAC of a message m, one can additionally check that m is in this list, with a
negligible change in probability. In our calculus, the arguments of the MAC oracle are
stored in arrays, and we perform a lookup in these arrays in order to find the message

m. Arrays make it easier to automate proofs since they are always present in the calcu-
lus: one does not need to add explicit instructions to insert values in them, in contrast to
the lists used in manual proofs. Therefore, many trivially sound but difficult to automate
syntactic transformations disappear. Furthermore, relations between elements of arrays
can easily be expressed by equalities, possibly involving computations on array indices.

CryptoVerif relies on a collection of game transformations, in order to transform the
initial protocol into a game on which the desired security property is obvious. The most
important kind of transformations exploits the security assumptions on cryptographic
primitives in order to obtain a simpler game. As described in Section 2.2, these trans-
formations can be specified in a generic way: we represent the security assumption of
each cryptographic primitive by an observational equivalence L ≈p R, where the pro-
cesses L and R encode oracles: they input the arguments of the oracle and send its result
back. Then, the prover can automatically transform a process Q that calls the oracles of
L (more precisely, contains as subterms terms that perform the same computations as
oracles of L) into a process Q′ that calls the oracles of R instead. We have used this
technique to specify several variants of shared-key and public-key encryption, signature,
message authentication codes, hash functions, Diffie-Hellman key agreement, simply by
giving the appropriate equivalence L ≈p R to the prover. Other game transformations
are syntactic transformations, used in order to be able to apply an assumption on a cryp-
tographic primitive, or to simplify the game obtained after applying such an assumption.

In order to prove protocols, these game transformations are organized using a proof
strategy based on advice: when a transformation fails, it suggests other transformations
that should be applied before, in order to enable the desired transformation. Thanks to
this strategy, protocols can often be proved in a fully automatic way. For delicate cases,
CryptoVerif has an interactive mode, in which the user can manually specify the trans-
formations to apply. It is usually sufficient to specify a few transformations coming from
the security assumptions of primitives, by indicating the concerned cryptographic prim-
itive and the concerned secret key if any; the prover infers the intermediate syntactic
transformations by the advice strategy. This mode is helpful for proving some public-key
protocols, in which several security assumptions on primitives can be applied, but only
one leads to a proof of the protocol. Importantly, CryptoVerif is always sound: whatever
indications the user gives, when the prover shows a security property of the protocol, the
property indeed holds assuming the given assumptions on the cryptographic primitives.

CryptoVerif has been implemented in Ocaml (29800 lines of code for version 1.12
of CryptoVerif) and is available at http://www.cryptoverif.ens.fr/.

Outline The next section presents the process calculus for representing games. Sec-
tion 2 describes the game transformations that serve for proving protocols. Section 3
gives criteria for proving secrecy properties of protocols. Section 4 explains how the
prover chooses which transformation to apply at each point. Section 5 presents applica-
tions of CryptoVerif and Section 6 concludes.

Notations We recall the following standard notations. We denote by {M1/x1, . . . ,
Mm/xm} the substitution that replaces xj with Mj for each j ≤ m. The cardinal of a set

or multiset S is denoted by |S|. If S is a finite set, x
R←S chooses a random element uni-

formly in S and assigns it to x. IfA is a probabilistic algorithm, x← A(x1, . . . , xm) de-
notes the experiment of choosing random coins r and assigning to x the result of running
A(x1, . . . , xm) with coins r. Otherwise, x←M is a simple assignment statement.

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replication n times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[i1, . . . , im] : T ;P random number
let x[i1, . . . , im] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′ conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj) ∧Mj then Pj) else P array lookup
event e(M1, . . . ,Ml);P event

Figure 1. Syntax of the process calculus

1. A Calculus for Games

1.1. Syntax and Informal Semantics

CryptoVerif represents games in the syntax of Figure 1. This calculus assumes a count-
able set of channel names, denoted by c. It uses parameters, denoted by n, which are
integers that bound the number of executions of processes. It also uses types, denoted by
T , which are subsets of bitstring⊥ = bitstring ∪ {⊥} where bitstring is the set of all
bitstrings and⊥ is a special symbol. Let fixed-length types be types that consist of the set
of all bitstrings of a certain length. Particular types are predefined: bool = {true, false},
where false is 0 and true is 1; bitstring ; bitstring⊥; [1, n] where n is a parameter. (We
consider integers as bitstrings without leading zeroes.)

The calculus also uses function symbols f . Each function symbol comes with a
type declaration f : T1 × . . . × Tm → T , and represents an efficiently computable,
deterministic function that maps each tuple in T1×. . .×Tm to an element of T . Particular
functions are predefined, and some of them use the infix notation: M = N for the
equality test, M �= N for the inequality test (both taking two values of the same type T
and returning a value of type bool), M ∨ N for the boolean or, M ∧ N for the boolean
and, ¬M for the boolean negation (taking and returning values of type bool).

In this calculus, terms represent computations on bitstrings. The replication in-
dex i is an integer which serves in distinguishing different copies of a replicated pro-
cess !i≤n. (Replication indices are typically used as array indices.) The variable ac-
cess x[M1, . . . ,Mm] returns the content of the cell of indices M1, . . . ,Mm of the m-
dimensional array variable x. We use x, y, z, u as variable names. The function applica-
tion f(M1, . . . ,Mm) returns the result of applying function f to M1, . . . ,Mm.

The calculus distinguishes two kinds of processes: input processes Q are ready to
receive a message on a channel; output processes P output a message on a channel after
executing some internal computations. The input process 0 does nothing; Q | Q′ is the
parallel composition of Q and Q′; !i≤nQ represents n copies of Q in parallel, each with
a different value of i ∈ [1, n]; newChannel c;Q creates a new private channel c and
executes Q; the semantics of the input c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P will
be explained below together with the semantics of the output.

The output process new x[i1, . . . , im] : T ;P chooses a new random number uni-
formly in T , stores it in x[i1, . . . , im], and executes P . (The type T must be a fixed-
length type, because probabilistic Turing machines can choose random numbers uni-
formly only in such types.) Function symbols represent deterministic functions, so all
random numbers must be chosen by new x[i1, . . . , im] : T . Deterministic functions make
automatic syntactic manipulations easier: we can duplicate a term without changing its
value. The process let x[i1, . . . , im] : T = M in P stores the bitstring value of M (which
must be in T) in x[i1, . . . , im] and executes P . The process event e(M1, . . . ,Ml);P
executes the event e(M1, . . . ,Ml), then runs P . This event records that a certain pro-
gram point has been reached with certain values of M1, . . . ,Ml, but otherwise does not
affect the execution of the process. Next, we explain the process find (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj) ∧ Mj then Pj) else P ,

where ĩ denotes a tuple i1, . . . , im′ . The order and array indices on tuples are taken
component-wise, so for instance, uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
can be further

abbreviated ũj [̃i] ≤ ñj . A simple example is the following: find u ≤ n suchthat
defined(x[u]) ∧ x[u] = a then P ′ else P tries to find an index u such that x[u] is de-
fined and x[u] = a, and when such a u is found, it executes P ′ with that value of u;
otherwise, it executes P . In other words, this find construct looks for the value a in the
array x, and when a is found, it stores in u an index such that x[u] = a. Therefore, the
find construct allows us to access arrays, which is key for our purpose. More generally,
find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat defined(M1, . . . ,Ml) ∧M then P ′ else P
tries to find values of u1, . . . , um for which M1, . . . ,Ml are defined and M is true.
In case of success, it executes P ′. In case of failure, it executes P . This is further
generalized to m branches: find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj) ∧ Mj then Pj) else P tries to find a branch j in [1,m] such
that there are values of uj1, . . . , ujmj

for which Mj1, . . . ,Mjlj are defined and Mj is
true. In case of success, it executes Pj . In case of failure for all branches, it executes P .
More formally, it evaluates the conditions defined(Mj1, . . . ,Mjlj) ∧Mj for each j and

each value of uj1 [̃i], . . . , ujmj
[̃i] in [1, nj1]× . . .× [1, njmj

]. If none of these conditions
is true, it executes P . Otherwise, it chooses randomly with uniform2 probability one j
and one value of uj1 [̃i], . . . , ujmj

[̃i] such that the corresponding condition is true and
executes Pj . The conditional if defined(M1, . . . ,Ml) ∧M then P else P ′ executes P if
M1, . . . ,Ml are defined and M evaluates to true. Otherwise, it executes P ′. This con-
ditional is equivalent to find suchthat defined(M1, . . . ,Ml) ∧M then P else P ′. The

2A probabilistic Turing machine can choose a random number uniformly in a set of cardinal m only when
m is a power of 2. When m is not a power of 2, there exist approximate algorithms: for example, in order to
obtain a random integer in [0,m − 1], we can choose a random integer r uniformly among [0, 2k − 1] for a
certain k large enough and return r mod m. The distribution can be made as close as we wish to the uniform
distribution by choosing k large enough.

conjunct defined(M1, . . . ,Ml) can be omitted when l = 0 and M can be omitted when
it is true.

Finally, let us explain the output c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q. A channel c[M1,
. . . ,Ml] consists of both a channel name c and a tuple of terms M1, . . . ,Ml. Chan-
nel names c can be declared private by newChannel c; the adversary can never have
access to channel c[M1, . . . ,Ml] when c is private. (This is useful in the proofs, al-
though all channels of protocols are often public.) Terms M1, . . . ,Ml are intuitively
analogous to IP addresses and ports, which are numbers that the adversary may guess.
A semantic configuration always consists of a single output process (the process cur-
rently being executed) and several input processes. When the output process executes
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q, one looks for an input on channel c[M ′l . . . ,M

′
l], where

M ′1, . . . ,M
′
l evaluate to the same bitstrings as M1, . . . ,Ml, and with the same arity k, in

the available input processes. If no such input process is found, the process blocks. Oth-
erwise, one such input process c[M ′1, . . . ,M

′
l](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P is chosen

randomly with uniform probability. The communication is then executed: for each j ≤ k,
the output message Nj is evaluated and stored in xj [̃i] if it is in Tj (otherwise the process
blocks). Finally, the output process P that follows the input is executed. The input pro-
cess Q that follows the output is stored in the available input processes for future execu-
tion. The syntax requires an output to be followed by an input process, as in [43]. If one
needs to output several messages consecutively, one can simply insert fictitious inputs
between the outputs. The adversary can then schedule the outputs by sending messages
to these inputs.

Using different channels for each input and output allows the adversary to control
the network. For instance, we may write !i≤nc[i](x[i] : T) . . . c′[i]〈M〉 . . . The adversary
can then decide which copy of the replicated process receives its message, simply by
sending it on c[i] for the appropriate value of i.

An else branch of find or if may be omitted when it is else yield〈〉; 0. (Note that
“else 0” would not be syntactically correct.) Similarly, yield〈〉; 0 may be omitted after
an event or a restriction. A trailing 0 after an output may be omitted.

The current replication indices at a certain program point in a process are i1, . . . , im
where the replications above the considered program point are !i1≤n1 . . . !im≤nm . We
often abbreviate x[i1, . . . , im] by x when i1, . . . , im are the current replication indices,
but it should be kept in mind that this is only an abbreviation. Variables x defined under
a replication must be arrays with indices the current replication indices at the definition
of x: for example, !i1≤n1 . . . !im≤nm let x[i1, . . . , im] : T = M in . . . More formally, we
require the following invariant:

Invariant 1 (Single definition) The process Q0 satisfies Invariant 1 if and only if

1. in every definition of x[i1, . . . , im] in Q0, the indices i1, . . . , im of x are the
current replication indices at that definition, and

2. two different definitions of the same variable x in Q0 are in different branches of
a find (or if).

Invariant 1 guarantees that each variable is assigned at most once for each value of its
indices. (Indeed, item 2 shows that only one definition of each variable can be executed
for given indices in each trace.)

Invariant 2 (Defined variables) The process Q0 satisfies Invariant 2 if and only if every
occurrence of a variable access x[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition of x[M1, . . . ,Mm] (in which case M1, . . . ,Mm

are in fact the current replication indices at the definition of x);
• or in a defined condition in a find process;

• or in M ′j or Pj in a process of the form find (
⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat
defined(M ′j1, . . . ,M

′
jlj

) ∧ M ′j then Pj) else P where for some k ≤ lj ,
x[M1, . . . ,Mm] is a subterm of M ′jk.

Invariant 2 guarantees that variables can be accessed only when they have been initial-
ized. It checks that the definition of the variable access is either in scope (first item) or
checked by a find (last item).

We use a type system, detailed in [23, Appendix A], to check that bitstrings of the
proper type are given to each function and that array indices are used correctly.

Invariant 3 (Typing) The process Q0 satisfies Invariant 3 if and only if it is well-typed.

We require the adversary to be well-typed. This requirement does not restrict its com-
puting power, because it can always define type-cast functions f : T → T ′ to bypass
the type system. Similarly, the type system does not restrict the class of protocols that
we consider, since the protocol may contain type-cast functions. The type system just
makes explicit which set of bitstrings may appear at each point of the protocol. The
three invariants are checked by the prover for the initial game and preserved by all game
transformations.

The formal semantics is defined by a probabilistic reduction relation [23, Ap-
pendix B]. Our semantics is such that all processes can be simulated by probabilistic
Turing machines, and conversely.

We say that a function f : T1 × . . .× Tm → T is poly-injective when it is injective
and its inverses are efficiently computable, that is, there exist functions f−1j : T → Tj

(1 ≤ j ≤ m) such that f−1j (f(x1, . . . , xm)) = xj and f−1j is efficiently computable.
When f is poly-injective, we define a pattern matching construct let f(x1, . . . , xm) =
M in P else Q as an abbreviation for let y : T = M in let x1 : T1 = f−11 (y) in . . .
let xm : Tm = f−1m (y) in if f(x1, . . . , xm) = y then P else Q. We naturally generalize
this construct to let N = M in P else Q where N is built from poly-injective functions
and variables.

We denote by var(Q) the set of variables that occur in Q.

1.2. Example

Let us introduce two cryptographic primitives that we use below.

Definition 1 Let Tmr, Tmk, and Tms be types that correspond intuitively to random
seeds, keys, and message authentication codes, respectively; Tmr is a fixed-length type.
A message authentication code scheme MAC [17] consists of three function symbols:

• mkgen : Tmr → Tmk is the key generation algorithm taking as argument a
random bitstring and returning a key. (Usually, mkgen is a randomized algorithm;
here, since we separate the choice of random numbers from computation, mkgen
takes an additional argument representing the random coins.)

• mac : bitstring × Tmk → Tms is the MAC algorithm taking as arguments a
message and a key, and returning the corresponding tag. (We assume here that
mac is deterministic; we could easily encode a randomized mac by adding an
additional argument as for mkgen.)

• verify : bitstring × Tmk × Tms → bool is a verification algorithm such that
verify(m, k, t) = true if and only if t is a valid MAC of message m under key k.
(Since mac is deterministic, verify(m, k, t) is typically mac(m, k) = t.)

We have ∀m ∈ bitstring ,∀r ∈ Tmr,verify(m,mkgen(r),mac(m,mkgen(r))) = true.
The advantage of an adversary against unforgeability under chosen message attacks

(UF-CMA) is

Succuf−cma
MAC (t, qm, qv, l) = max

A
Pr

⎡⎢⎣r R←Tmr; k ← mkgen(r);
(m, s)← Amac(.,k),verify(.,k,.) : verify(m, k, s)
∧m was never queried to the oracle mac(., k)

⎤⎥⎦
where the adversary A is any probabilistic Turing machine that runs in time at most t,
callsmac(., k) at most qm times with messages of length at most l, and calls verify(., k, .)
at most qv times with messages of length at most l.

Succuf−cma
MAC (t, qm, qv, l) is the probability that an adversary forges a MAC, that is,

returns a pair (m, s) where s is a correct MAC for m, without having queried the MAC
oracle mac(., k) on m. Intuitively, when the MAC is secure, this probability is small: the
adversary has little chance of forging a MAC. Hence, the MAC guarantees the integrity
of the MACed message because one cannot compute the MAC without the secret key.

Two frameworks exist for expressing security properties. In the asymptotic frame-
work, used in [22, 23], the length of keys is determined by a security parameter η, and
a MAC is UF-CMA when Succuf−cma

MAC (t, qm, qv, l) is a negligible function of η when t
is polynomial in η. (f(η) is negligible when for all polynomials q, there exists ηo ∈ N

such that for all η > η0, f(η) ≤ 1
q(η) .) The assumption that functions are efficiently

computable means that they are computable in time polynomial in η and in the length of
their arguments. The goal is to show that the probability of success of an attack against
the protocol is negligible, assuming the parameters n are polynomial in η and the net-
work messages are of length polynomial in η. In contrast, in the exact security frame-
work, on which we focus in this course, one computes the probability of success of an
attack against the protocol as a function of the probability of breaking the primitives such
as Succuf−cma

MAC (t, qm, qv, l), of the runtime of functions, of the parameters n, and of the
length of messages, thus providing a more precise security result. Intuitively, the prob-
ability Succuf−cma

MAC (t, qm, qv, l) is assumed to be small (otherwise, the computed proba-
bility of attack will be large), but no formal assumption on this probability is needed to
establish the security theorem.

Definition 2 Let Tr and T ′r be fixed-length types representing random coins; let Tk

and Te be types for keys and ciphertexts respectively. A symmetric encryption scheme
SE [17] consists of three function symbols:

• kgen : Tr → Tk is the key generation algorithm taking as argument random coins
and returning a key,

• enc : bitstring × Tk × T ′r → Te is the encryption algorithm taking as arguments
the cleartext, the key, and random coins, and returning the ciphertext,

• dec : Te × Tk → bitstring⊥ is the decryption algorithm taking as arguments
the ciphertext and the key, and returning either the cleartext when decryption
succeeds or ⊥ when decryption fails,

such that ∀m ∈ bitstring , ∀r ∈ Tr, ∀r′ ∈ T ′r, dec(enc(m, kgen(r), r′), kgen(r)) = m.
Let LR(x, y, b) = x if b = 0 and LR(x, y, b) = y if b = 1, defined only when x

and y are bitstrings of the same length. The advantage of an adversary against indistin-
guishability under chosen plaintext attacks (IND-CPA) is

Succind−cpaSE (t, qe, l) = max
A

2Pr

[
b

R←{0, 1}; r R←Tr; k ← kgen(r);

b′ ← Ar′
R←T ′

r;enc(LR(.,.,b),k,r′) : b′ = b

]
− 1

where A is any probabilistic Turing machine that runs in time at most t and calls

r′
R←T ′r; enc(LR(., ., b), k, r′) at most qe times on messages of length at most l.

Given two bitstrings a0 and a1 of the same length, the left-right encryption ora-

cle r′
R←T ′r; enc(LR(., ., b), k, r′) returns r′

R←T ′r; enc(LR(a0, a1, b), k, r
′), that is, en-

crypts a0 when b = 0 and a1 when b = 1. Succind−cpaSE (t, qe, l) is the probability that
the adversary distinguishes the encryption of the messages a0 given as first arguments to
the left-right encryption oracle from the encryption of the messages a1 given as second
arguments. Intuitively, when the encryption scheme is IND-CPA secure, this probability
is small: the ciphertext gives almost no information what the cleartext is (one cannot
determine whether it is a0 or a1 without having the secret key).

Example 1 Let us consider the following trivial protocol:

A→ B : e,mac(e, xmk) where e = enc(x′k, xk, x
′
r)

and x′r, x
′
k are fresh random numbers

A and B are assumed to share a key xk for a symmetric encryption scheme and a key xmk

for a message authentication code. A creates a fresh key x′k and sends it encrypted under
xk to B. A MAC is appended to the message, in order to guarantee integrity. In other
words, the protocol sends the key x′k encrypted using an encrypt-then-MAC scheme [17].
The goal of the protocol is that x′k should be a secret key shared between A and B. This
protocol can be modeled in our calculus by the following process Q0:

Q0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new xmr : Tmr; let xmk : Tmk = mkgen(xmr) in c〈〉; (QA | QB)

QA = !i≤ncA[i](); new x′k : Tk; new x′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′
r) in cA[i]〈xm,mac(xm, xmk)〉

QB = !i
′≤ncB [i

′](x′m, xma); if verify(x
′
m, xmk, xma) then

let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in cB [i′]〈〉

When Q0 receives a message on channel start, it begins execution: it generates the keys
xk and xmk by choosing random coins xr and xr′ and applying the appropriate key
generation algorithms. Then it yields control to the adversary, by outputting on channel
c. After this output, n copies of processes for A and B are ready to be executed, when
the adversary outputs on channels cA[i] or cB [i] respectively. In a session that runs as
expected, the adversary first sends a message on cA[i]. Then QA creates a fresh key x′k
(Tk is assumed to be a fixed-length type), encrypts it under xk with random coins x′r,
computes the MAC under xmk of the ciphertext, and sends the ciphertext and the MAC
on cA[i]. The function k2b : Tk → bitstring is the natural injection k2b(x) = x; it is
needed only for type conversion. The adversary is then expected to forward this message
on cB [i]. When QB receives this message, it verifies the MAC, decrypts, and stores the
obtained key in x′′k . (The function i⊥ : bitstring → bitstring⊥ is the natural injection; it
is useful to check that decryption succeeded.) This key x′′k should be secret.

The adversary is responsible for forwarding messages from A to B. It can send
messages in unexpected ways in order to mount an attack.

This very small example is sufficient to illustrate the main features of CryptoVerif.
Section 5 presents results obtained on more realistic protocols.

1.3. Observational Equivalence

Let us now formally define game indistinguishability, which we name observational
equivalence by analogy with that notion in the Dolev-Yao model. A context is a process
containing a hole []. An evaluation context C is a context built from [], newChannel c;C,
Q | C, and C | Q. We use an evaluation context to represent the adversary. We denote
by C[Q] the process obtained by replacing the hole [] in the context C with the process
Q. The executed events can be used to distinguish games, so we introduce an additional
algorithm, a distinguisher D that takes as input a sequence of events E and returns true
or false. An example of distinguisher is De defined by De(E) = true if and only if
e ∈ E : this distinguisher detects the execution of event e. More generally, distinguish-
ers can detect various properties of the sequence of events E executed by the game. We
denote by Pr[Q � D] the probability that Q executes a sequence of events E such that
D(E) returns true.

Definition 3 (Observational equivalence) Let Q and Q′ be two processes and V a set
of variables. Assume that Q and Q′ satisfy Invariants 1, 2, and 3 and the variables of V
are defined in Q and Q′, with the same types.

An evaluation context is said to be acceptable for Q with public variables V if and
only if var(C) ∩ var(Q) ⊆ V and C[Q] satisfies Invariants 1, 2, and 3.

We say that Q and Q′ are observationally equivalent up to probability p with public
variables V , written Q ≈V

p Q′, when for all evaluation contexts C acceptable for Q and
Q′ with public variables V , for all distinguishers D, |Pr[C[Q] � D] − Pr[C[Q′] �
D]| ≤ p(C,D).

This definition formalizes that algorithms C and D distinguish Q and Q′ with prob-
ability at most p(C,D). The probability p typically depends on the runtime of C and D,
but may also depend on other parameters, such as the number of messages sent by C to
each replicated process. That is why p takes as arguments C and D themselves.

The unusual requirement on variables of C comes from the presence of arrays and
of the associated find construct which gives C direct access to variables of Q and Q′: the
context C is allowed to access variables of Q and Q′ only when they are in V . (In more
standard settings, the calculus does not have constructs that allow the context to access
variables of Q and Q′.) When V is empty, we write Q ≈p Q′ instead of Q ≈V

p Q′.
The following result is not difficult to prove:

Lemma 1 1. Reflexivity: Q ≈V
0 Q.

2. Symmetry: if Q ≈V
p Q′, then Q′ ≈V

p Q.
3. Transitivity: if Q ≈V

p Q′ and Q′ ≈V
p′ Q′′, then Q ≈V

p+p′ Q′′.
4. If Q ≈V

p Q′ and C is an evaluation context acceptable for Q and Q′ with public

variables V , then C[Q] ≈V ′
p′ C[Q′], where p′(C ′, D) = p(C ′[C], D) and V ′ ⊆

V ∪ var(C).

Proofs by sequences of games consist of a sequence of observationally equivalent games
Q0 ≈V

p1
Q1 ≈V

p2
. . . ≈V

pn
Qn. By transitivity, Q0 ≈V

p1+...+pn
Qn, so by definition of

observational equivalence, Pr[C[Q0]� D] ≤ Pr[C[Qn]� D]+(p1+. . .+pn)(C,D).

2. Game Transformations

In this section, we describe the game transformations that allow us to transform the pro-
cess that represents the initial protocol into a process on which the desired security prop-
erty can be proved directly, by criteria given in Section 3. These transformations are pa-
rameterized by the set V of variables that the context can access. As we shall see in Sec-
tion 3, V contains variables that we would like to prove secret. (The context will contain
test queries that access these variables.) These transformations transform a process Q0

into a process Q′0 such that Q0 ≈V
p Q′0; CryptoVerif evaluates the probability p.

2.1. Syntactic Transformations

RemoveAssign(x): When x is defined by an assignment let x[i1, . . . , il] : T = M in P
and x does not occur in M (non-cyclic assignment), we replace x with its value.
When x has several definitions, we simply replace x[i1, . . . , il] with M in P . (For ac-
cesses to x guarded by find, we do not know which definition of x is actually used.)
When x has a single definition, we replace everywhere in the game x[M1, . . . ,Ml]
with M{M1/i1, . . . ,Ml/il}. We additionally update the defined conditions of find
to preserve Invariant 2 and to make sure that, if a condition of find guarantees that
x[M1, . . . ,Ml] is defined in the initial game, then so does the corresponding condition of
find in the transformed game. When x ∈ V , its definition is kept unchanged. Otherwise,
when x is not referred to at all after the transformation, we remove the definition of x.
When x is referred to only at the root of defined tests, we replace its definition with a
constant. (The definition point of x is important, but not its value.)

Example 2 In the process of Example 1, the transformation RemoveAssign(xmk)
substitutes mkgen(xmr) for xmk in the whole process and removes the assignment
let xmk : Tmk = mkgen(xmr). After substitution, mac(xm, xmk) becomes mac(xm,
mkgen(xmr)) and verify(x′m, xmk, xma) becomes verify(x′m,mkgen(xmr), xma), thus
exhibiting terms required in Section 2.2. The situation is similar for RemoveAssign(xk).

SArename(x): The transformation SArename (single assignment rename) aims at re-
naming variables so that each variable has a single definition in the game; this is use-
ful for distinguishing cases depending on which definition of x has set x[̃i]. This trans-
formation can be applied only when x /∈ V . When x has m > 1 definitions, we
rename each definition of x to a different variable x1, . . . , xm. Terms x[̃i] under a
definition of xj [̃i] are then replaced with xj [̃i]. Each branch of find FB = ũ[̃i] ≤
ñ suchthat defined(M1, . . . ,Ml)∧M then P where x[M̃] is a subterm of some Mk for
k ≤ l is replaced with m branches FB{xj [M̃]/x[M̃]} for 1 ≤ j ≤ m.
Simplify: The prover uses a simplification algorithm, based on an equational prover,
using an algorithm similar to the Knuth-Bendix completion [40]. This equational prover
uses:

• User-defined equations, of the form ∀x1 : T1, . . . ,∀xm : Tm,M which mean
that for all values of x1 in T1, . . . , xm in Tm, M evaluates to true. For example,
considering MAC and encryption schemes as in Definitions 1 and 2 respectively,
we have:

∀r : Tmr, ∀m : bitstring , verify(m,mkgen(r),mac(m,mkgen(r))) = true
(mac)

∀m : bitstring ; ∀r : Tr, ∀r′ : T ′r, dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)
(enc)

We express the poly-injectivity of the function k2b of Example 1 by

∀x : Tk, ∀y : Tk, (k2b(x) = k2b(y)) = (x = y)

∀x : Tk, k2b
−1(k2b(x)) = x

(k2b)

where k2b−1 is a function symbol that denotes the inverse of k2b. We have sim-
ilar formulas for i⊥.

• Equations that come from the process. For example, in the process if M then P
else P ′, we have M = true in P and M = false in P ′.

• The low probability of collision between random values. For example, when x
is defined by new x : T under replications bounded by n1, . . . , nm, x[M1, . . . ,
Mm] = x[M ′1, . . . ,M

′
m] implies M1 = M ′1, . . . , Mm = M ′m up to probability

p = (n1...nm)2

2|T | (probability that two distinct cells of the array x are equal). This
transformation is performed when the type T is large, which means that |T | is
large enough so that the probability p can be considered small.
Similarly, when 1) x is defined by new x : T and T is a large type, 2) for each
value of M1, there is at most one value of x (or of a part of x of a large type) that
can yield that value of M1, and 3) M2 does not depend on x, then M1 �= M2 up
to a small probability. The fact that M2 does not depend on x is proved using a
dependency analysis.

The prover combines these properties to simplify terms, and uses simplified forms of
terms to simplify processes. For example, if M simplifies to true, then if M then P else
P ′ simplifies to P . Similarly, a branch of find is removed when the associated condition
simplifies to false.

Details on the simplification procedure can be found in [23, Appendix C]. The
asymptotic version of the following proposition is proved in [23, Appendix E.1].

Proposition 1 Let Q0 be a process that satisfies Invariants 1, 2, and 3 and Q′0 the process
obtained from Q0 by one of the transformations above. Then Q′0 satisfies Invariants 1,
2, and 3, and Q0 ≈V

p Q′0, where p = 0 for the transformations RemoveAssign and
SArename, and p is the probability of eliminated collisions for Simplify.

2.2. Applying the Security Assumptions on Primitives

The security of cryptographic primitives is defined using observational equivalences
given as axioms. Importantly, this formalism allows us to specify many different primi-
tives in a generic way. Such equivalences are then used by the prover in order to trans-
form a game into another, observationally equivalent game, as explained below.

The primitives are specified using equivalences of the form (G1, . . . , Gm) ≈p

(G′1, . . . , G
′
m) where G is defined by the following grammar, with l ≥ 0 and m ≥ 1:

G ::= group of oracles
!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm) replication, restrictions
O(x1 : T1, . . . , xl : Tl) := OP oracle

OP ::= oracle processes
M term
new x[̃i] : T ;OP random number
let x[̃i] : T = M in OP assignment
find (

⊕m
j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj) ∧Mj then OP j) else OP array lookup

Intuitively, O(x1 : T1, . . . , xl : Tl) := OP represents an oracle O that takes as argu-
ment values x1, . . . , xl of types T1, . . . , Tl respectively and returns a result computed
by OP . The observational equivalence (G1, . . . , Gm) ≈p (G′1, . . . , G

′
m) expresses that

the adversary has probability at most p of distinguishing oracles in the left-hand side
from corresponding oracles in the right-hand side. Formally, oracles can be encoded as
processes that input their arguments and output their result on a channel, as detailed
in [23]. Denoting by [[(G1, . . . , Gm)]] the encoding of (G1, . . . , Gm) as a process, the
observational equivalence (G1, . . . , Gm) ≈p (G′1, . . . , G

′
m) is then an abbreviation for

[[(G1, . . . , Gm)]] ≈p [[(G′1, . . . , G
′
m)]].

For example, the security of a MAC (Definition 1) is represented by the equivalence
L ≈pmac

R where:

L = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac(x,mkgen(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) := verify(m,mkgen(r),ma))

R = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac′(x,mkgen′(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) :=

find u ≤ n suchthat defined(x[u]) ∧ (m = x[u])

∧ verify′(m,mkgen′(r),ma) then true else false)

pmac(C,D) = n′′ Succuf−cma
MAC (tC + (n′′ − 1)(time(mkgen) + n time(mac,maxl(x))

+ n′ time(verify,maxl(m)), n, n′,max(maxl(x),maxl(m)))

(maceq)

where mac′, verify′, and mkgen′ are function symbols with the same types as mac,
verify, and mkgen respectively. (We use different function symbols on the left- and right-
hand sides, just to prevent a repeated application of the transformation induced by this
equivalence. Since we add these function symbols, we also add the equation

∀r : Tmr, ∀m : bitstring , verify′(m,mkgen′(r),mac′(m,mkgen′(r))) = true
(mac′)

which restates (mac) for mac′, verify′, and mkgen′.) Intuitively, the equivalence
L ≈pmac

R leaves MAC computations unchanged (except for the use of primed function
symbols in R), and allows one to replace a MAC verification verify(m,mkgen(r),ma)
with a lookup in the array x of messages whose mac has been computed with key
mkgen(r): if m is found in the array x and verify(m,mkgen(r),ma), we return true;
otherwise, the verification fails (up to negligible probability), so we return false. (If the
verification succeeds with m not in the array x, then the adversary has forged a MAC.)
Obviously, the form of L requires that r is used only to compute or verify MACs, for
the equivalence to be correct. In the probability pmac(C,D), tC is the runtime of context
C; n′′ is the maximum number of considered MAC keys; n′ and n′′ are respectively the
maximum number of calls to Omac and Overify for each MAC key (n, n′, n′′ are in fact
functions of C); time(f, l1, . . . , lk) is the maximum runtime of f , called with arguments
of length at most l1, . . . , lk (the lengths l1, . . . , lk are omitted when the type of the ar-
gument already bounds its length); maxl(x) is the maximum length of x. Formally, the
following result shows the correctness of our modeling. It is a fairly easy consequence
of Definition 1, and its asymptotic version is proved in [23, Appendix E.3].

Proposition 2 If (mkgen,mac, verify) is a UF-CMA message authentication code and
the symbols mkgen′, mac′, and verify′ represent the same functions as mkgen, mac,
and verify respectively, then [[L]] ≈pmac

[[R]].

Similarly, if (kgen, enc, dec) is an IND-CPA symmetric encryption scheme (Defini-
tion 2), then we have the following equivalence:

!i
′≤n′

new r : Tr; !
i≤nOenc(x : bitstring) := new r′ : T ′r; enc(x, kgen(r), r

′)

≈penc
!i

′≤n′
new r : Tr; !

i≤nOenc(x : bitstring) := new r′ : T ′r; enc
′(Z(x), kgen′(r), r′)

(enceq)

where penc(C,D) = n′ Succind−cpaSE (tC + tD + (n′ − 1)(time(kgen) + n time(enc,
maxl(x)) + n time(Z,maxl(x))), n,maxl(x)), enc′ and kgen′ are function symbols
with the same types as enc and kgen respectively, and Z : bitstring → bitstring is the
function that returns a bitstring of the same length as its argument, consisting only of
zeroes. Using equations such as ∀x : T,Z(T2b(x)) = ZT , we can prove that Z(T2b(x))
does not depend on x when x is of a fixed-length type T and T2b : T → bitstring
is the natural injection. The representation of other primitives can be found in [23, Ap-
pendix D.3]. The equivalences that formalize the security assumptions on primitives are
designed and proved correct by hand from security assumptions in a more standard form,
as in the MAC example. Importantly, these manual proofs are done only once for each
primitive, and the obtained equivalence can be reused for proving many different proto-
cols automatically.

Assuming L ≈p R, Lemma 1 yields C[[[L]]] ≈V
p′ C[[[R]]] with p′(C ′, D) =

p(C ′[C], D), for all evaluation contexts C acceptable for [[L]] and [[R]] with no public
variables, so we can transform a process Q0 such that Q0 ≈V

0 C[[[L]]] into a process Q′0
such that Q0 ≈V

0 C[[[L]]] ≈V
p′ C[[[R]]] ≈V

0 Q′0. In order to check that Q0 ≈V
0 C[[[L]]],

the prover uses syntactic conditions detailed in [23, Appendix D.1] and sketched in Ex-
ample 3 below. The following proposition shows the soundness of the transformation; its
asymptotic version is proved in [23, Appendix E.4].

Proposition 3 Let Q0 be a process that satisfies Invariants 1, 2, and 3 and Q′0 the process
obtained from Q0 by the above transformation. Then Q′0 satisfies Invariants 1, 2, and 3
and, if [[L]] ≈p [[R]], then Q0 ≈V

p′ Q′0 where p′(C ′, D) = p(C ′[C], D) and C is an
evaluation context such that Q0 ≈V

0 C[[[L]]] ≈V
p′ C[[[R]]] ≈V

0 Q′0.

Example 3 In order to treat Example 1, the prover is given as input the indication
that Tmr, Tr, T

′
r, and Tk are fixed-length types; the type declarations for the func-

tions mkgen,mkgen′ : Tmr → Tmk, mac,mac′ : bitstring × Tmk → Tms,
verify, verify′ : bitstring × Tmk × Tms → bool , kgen, kgen′ : Tr → Tk, enc, enc′ :
bitstring × Tk × T ′r → Te, dec : Te × Tk → bitstring⊥, k2b : Tk → bitstring ,
i⊥ : bitstring → bitstring⊥, Z : bitstring → bitstring , and the constant Zk : bitstring ;
the equations (mac), (mac′), (enc), and ∀x : Tk,Z(k2b(x)) = Zk (which expresses that
all keys have the same length); the indication that k2b and i⊥ are poly-injective (which
generates the equations (k2b) and similar equations for i⊥); equivalences L ≈p R for
MAC (maceq) and encryption (enceq); and the process Q0 of Example 1. Let V = {x′′k}.

The prover first applies RemoveAssign(xmk) to the process Q0 of Example 1, as
described in Example 2, yielding Q1. The process can then be transformed using the
security of the MAC. In the equivalence L ≈pmac

R (maceq) that expresses the security
of the MAC, L is an abbreviation for the process:

[[L]] = !i
′′≤n′′

cmkgen[i
′′](); new r : Tmr; cmkgen[i′′]〈〉; (

!i≤ncmac[i
′′, i](x : bitstring); cmac[i′′, i]〈mac(x,mkgen(r))〉 |

!i
′≤n′

cverify[i
′′, i′](m : bitstring ,ma : Tms); cverify[i′′, i′]〈verify(m,mkgen(r),ma)〉)

The process Q1 can be written under the form C[[[L]]], Q1 ≈V
0 C[[[L]]], for the following

context C:

C = newChannel cmkgen; newChannel cmac; newChannel cverify; ([] | start();

new xr : Tr; let xk : Tk = kgen(xr) in cmkgen[1]〈〉; cmkgen[1](); c〈〉; (QCA | QCB))

QCA = !i≤ncA[i](); new x′k : Tk; new x′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′
r) in

cmac[1, i]〈xm〉; cmac[1, i](xma); cA[i]〈xm, xma〉

QCB = !i
′≤ncB [i

′](x′m, xma); cverify[1, i′]〈x′m, xma〉; cverify[1, i′](b); if b then

let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in cB [i′]〈〉

Instead of generating the coins xmr for the MAC key itself, this context sends a mes-
sage on channel cmkgen[1], which is received by [[L]], so that [[L]] generates these coins.
Similarly, instead of computing the MAC, the context C sends the message to MAC
on channel cmac[1, i], so that [[L]] computes the MAC and sends it back on cmac[1, i].
Instead of verifying the MAC, C sends the message and the candidate MAC on chan-
nel cverify[1, i′], so that [[L]] verifies the MAC and sends the result back on cverify[1, i

′].
The channels cmkgen, cmac and cverify are declared private by newChannel, so that the
adversary cannot directly access [[L]].

Informally, the conditions verified by CryptoVerif to prove that Q1 ≈V
0 C[[[L]]] show

that there is a correspondence between the variables of L and terms or variables of Q1.
In the example, r[1] in L corresponds to xmr in Q1, x[1, a] to xm[a], m[1, a′] to x′m[a′],
and ma[1, a′] to xma[a

′]. This correspondence must be such that

• A variable x[ã] bound by new x : T in L must correspond to a variable z[ã′′]

bound by new z : T in Q1, and the relation that associates z[ã′′] to x[ã′] must
be an injective function (so that independent random numbers in L correspond to
independent random numbers in Q1).

• An oracle argument x[ã] in L must correspond to a term of the same type as x,
and when two terms correspond to the same x[ã], they must evaluate to the same
value.

• If L contains an oracle O(x1 : T1, . . . , xl : Tl) := M , the term obtained
by replacing the variables of M with their corresponding terms or variables of
Q1 is a term of Q1. The variables z of Q1 corresponding to variables x bound
by new x : T in L occur only in such terms, at occurrences corresponding
to occurrences of x in L. These variables z do not belong to V . In the exam-
ple, mac(x[1, a],mkgen(r[1])) in L corresponds to mac(xm[a],mkgen(xmr))
in Q1 and verify(m[1, a′],mkgen(r[1]),ma[1, a′]) corresponds to verify(x′m[a′],
mkgen(xmr), xma[a

′]). The variable xmr does not occur anywhere else in Q1

and xmr /∈ V .

CryptoVerif then transforms Q1 into C[[[R]]], which after some syntactic reorgani-
zations yields the following process Q2:

Q2 = start(); new xr : Tr; let xk : Tk = kgen(xr) in new xmr : Tmr; c〈〉; (Q2A | Q2B)

Q2A = !i≤ncA[i](); new x′k : Tk; new x′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′
r) in cA[i]〈xm,mac′(xm,mkgen′(xmr))〉

Q2B = !i
′≤ncB [i

′](x′m, xma);

find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧
verify′(x′m,mkgen′(xmr), xma)

then (if true then let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in cB [i′]〈〉)

else (if false then let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in cB [i′]〈〉)

The initial definition of xmr is removed and replaced with a new definition, which we still
call xmr. The term mac(xm,mkgen(xmr)) is replaced with mac′(xm,mkgen′(xmr)).
The term verify(x′m,mkgen(xmr), xma) becomes find u ≤ n suchthat defined(xm[u])
∧x′m = xm[u]∧verify′(x′m,mkgen′(xmr), xma) then true else false, which yields Q2B

after transformation of oracle processes into processes. The process looks up the message
x′m in the array xm, which contains the messages whose MAC has been computed with
key mkgen(xmr). If the MAC of x′m has never been computed, the verification always
fails (it returns false) by the security assumption on the MAC. Otherwise, it returns true
when verify′(x′m,mkgen′(xmr), xma). By instantiating the probability formula given
in (maceq), Q1 ≈p′

mac
Q2 where p′mac(C,D) = pmac(C[C ′], D) = Succuf−cma

MAC (tC +
time(kgen)+n time(enc, length(Tk))+n time(dec,maxl(x′m)), n, n,max(maxl(x′m),
maxl(xm))) since we use one MAC key (n′′ = 1), there are at most n calls to mac
and verify for that key (n′ = n), and the runtime of the adversary against (maceq) is
tC[C′] = tC + time(kgen) + n time(enc, length(Tk)) + n time(dec,maxl(x′m)).

Applying Simplify yields a game Q3: Q2A is unchanged and Q2B becomes

Q3B = !i
′≤ncB [i

′](x′m, xma);

find u ≤ n suchthat defined(xm[u], x′k[u]) ∧ x′m = xm[u] ∧
verify′(x′m,mkgen′(xmr), xma) then

let x′′k : Tk = x′k[u] in cB [i′]〈〉

First, the tests if true then . . . and if false then . . . are simplified. The term dec(x′m, xk)
is simplified knowing x′m = xm[u] by the find condition, xm[u] = enc(k2b(x′k[u]), xk,
x′r[u]) by the assignment that defines xm, xk = kgen(xr) by the assignment that defines
xk, and dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) by (enc). So we have dec(x′m,
xk) = dec(xm[u], xk) = dec(enc(k2b(x′k[u]), xk, x

′
r[u]), xk) = i⊥(k2b(x

′
k[u])). By

injectivity of i⊥ and k2b, the assignment to x′′k simply becomes x′′k = x′k[u], using the
equations ∀x : bitstring , i−1⊥ (i⊥(x)) = x and ∀x : Tk, k2b

−1(k2b(x)) = x.
After applying RemoveAssign(xk), which yields Q4, we use the security of encryp-

tion, yielding Q5: enc(k2b(x′k), kgen(xr), x
′
r) becomes enc′(Z(k2b(x′k)), kgen

′(xr),

x′r). We have Q4 ≈p′
enc

Q5 where p′enc(C,D) = penc(C[C ′′], D) = Succind−cpaSE (tC +
tD + (n+ n2)time(mkgen) + n time(mac,maxl(m)) + n2 time(verify,maxl(m′)) +
n2 time(=bitstring ,maxl(m′),maxl(m)), n, length(Tk)). (The evaluation of the run-
time of the context C ′′ is rather naive since we consider that mkgen(xmr) is com-
puted once in each execution of Q4A and once for each find test in Q4B , and simi-
larly verify is computed once for each find test in Q4B . By noticing that it is enough
to compute mkgen(xmr) once, and verify once in each execution of Q4B , one would

obtain Succind−cpaSE (tC + tD +time(mkgen)+n time(mac,maxl(m))+n time(verify,
maxl(m′)) + n2 time(= bitstring ,maxl(m′),maxl(m)), n, length(Tk)).) After Sim-
plify, enc′(Z(k2b(x′k)), kgen

′(xr), x
′
r) becomes enc′(Zk, kgen

′(xr), x
′
r), using ∀x :

Tk,Z(k2b(x)) = Zk (which expresses that all keys have the same length).
So we obtain the following game:

Q6 = start(); new xr : Tr; new xmr : Tmr; c〈〉; (Q6A | Q6B)

Q6A = !i≤ncA[i](); new x′k : Tk; new x′r : T ′r;

let xm : bitstring = enc′(Zk, kgen
′(xr), x

′
r) in cA[i]〈xm,mac′(xm,mkgen′(xmr))〉

Q6B = Q3B

By transitivity of ≈ (Lemma 1), Q0 ≈V
p′
mac+p′

enc
Q6 since the probability is 0 for steps

other than applying the security of MAC and encryption.

Using lists instead of arrays simplifies games transformations: we do not need to
add instructions that insert values in the list, since all variables are always implicitly
arrays. Moreover, if there are several occurrences of mac(xi, k) with the same key in the
initial process, each verify(mj , k,maj) is replaced with a find with one branch for each
occurrence of mac. Therefore, the prover distinguishes automatically the cases in which
the verified MAC maj comes from each occurrence of mac, that is, it distinguishes cases
depending on the value of i such that mj = xi. Typically, distinguishing these cases is
useful in the following steps of the proof of the protocol. (A similar situation arises for
other cryptographic primitives specified using find.)

3. Criteria for Proving Secrecy Properties

Let us now define syntactic criteria that allow us to prove secrecy properties of protocols.
The proofs of asymptotic versions of these results can be found in [23, Appendix E.5].

Definition 4 (One-session secrecy) Suppose that the variable x of type T is defined in
Q under a single !i≤n. Q preserves the one-session secrecy of x up to probability p when,
for all evaluation contexts C acceptable for Q | Qx without public variables that do not
contain S, 2Pr[C[Q | Qx]� DS]− 1 ≤ p(C) where DS(E) = (S ∈ E),

Qx = c0(); new b : bool; c0〈〉;
(c(u : [1, n]); if defined(x[u]) then if b then c〈x[u]〉 else new y : T ; c〈y〉
| c′(b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, y, and S do not occur in Q.

Intuitively, the adversary C distinguishes the value of each secret x[u] from a random
number with probability at most p(C). The adversary performs a single test query on
x[u], modeled by sending u on channel c in Qx. This test query returns x[u] when the
random bit b is true and a random number otherwise. The adversary then tries to guess b,
by sending its guess b′ on channel c′. When the guess is correct, event S is executed.

Proposition 4 (One-session secrecy) Consider a process Q such that there exists a set
of variables S such that 1) the definitions of x are either restrictions new x[̃i] : T and
x ∈ S, or assignments let x[̃i] : T = z[M1, . . . ,Ml] where z is defined by restrictions
new z[i′1, . . . , i

′
l] : T , and z ∈ S, and 2) all accesses to variables y ∈ S in Q are of the

form “let y′ [̃i] : T ′ = y[M1, . . . ,Ml]” with y′ ∈ S. Then Q preserves the one-session
secrecy of x up to probability 0.

Intuitively, only the variables in S depend on the restriction that defines x; the sent mes-
sages and the control flow of the process are independent of x, so the adversary obtains
no information on x. In the implementation, the set S is computed by fixpoint iteration,
starting from x or z and adding variables y′ defined by “let y′ [̃i] : T ′ = y[M1, . . . ,Ml]”
when y ∈ S.

Definition 5 (Secrecy) Assume that the variable x of type T is defined in Q under a
single !i≤n. Q preserves the secrecy of x up to probability p when, for all evalua-
tion contexts C acceptable for Q | Rx without public variables that do not contain S,
2Pr[C[Q | Rx]� DS]− 1 ≤ p(C) where DS(E) = (S ∈ E),

Rx = c0(); new b : bool; c0〈〉;

(!i≤n
′
c(u : [1, n]); if defined(x[u]) then if b then c〈x[u]〉 else

find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧ u[u′] = u then c〈y[u′]〉
else new y : T ; c〈y〉
| c′(b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, u′, y, and S do not occur in Q, and n′ ≥ n.

Intuitively, the adversary C distinguishes the secret array x from an array of independent
random numbers with probability at most p(C). In this definition, the adversary can
perform several test queries, modeled by Rx, which all return the value of x if b is true
and a random number if b is false. This corresponds to the “real-or-random” definition
of security [2]. (As shown in [2], this notion is stronger than the more standard approach
in which the adversary can perform a single test query and some reveal queries, which
always reveal x[u].)

Proposition 5 (Secrecy) Assume that Q satisfies the hypothesis of Proposition 4.
If T is a trace of C[Q] for some evaluation context C, we define defRestrT (x[ã]),

the defining restriction of x[ã] in trace T , as follows: if x[ã] is defined by new x[ã] : T
in T , defRestrT (x[ã]) = x[ã]; if x[ã] is defined by let x[ã] : T = z[M1, . . . ,Ml],
defRestrT (x[ã]) = z[a′1, . . . , a

′
l] where, for all k ≤ l, Mk evaluates to a′k in the trace T

at the definition of x[ã].
For all evaluation contexts C acceptable for Q with public variables {x}, let

p(C) = Pr[∃(T , ã, ã′), C[Q] reduces according to T ∧ ã �= ã′ ∧ defRestrT (x[ã]) =

defRestrT (x[ã′])]. Then Q preserves the secrecy of x up to probability 2p.

The collisions defRestrT (x[ã]) = defRestrT (x[ã′]) are eliminated using the same equa-
tional prover as for Simplify in Section 2.1, which yields a bound on p(C). Intuitively,

when ã �= ã′, we have defRestrT (x[ã]) �= defRestrT (x[ã′]) (except in cases of proba-
bility p(C)), so x[ã] and x[ã′] are defined by different restrictions, so they are indepen-
dent random numbers.

As we show in [22], secrecy composed with correspondence assertions [56] can be
used to prove security of a key exchange. (Correspondence assertions are properties of
the form “if some event e(M̃) has been executed then some events ei(M̃i) for i ≤ m
have been executed”. The verification of correspondence assertions in CryptoVerif in
presented in [22].)

Lemma 2 If Q ≈{x}p Q′ and Q preserves the one-session secrecy of x up to probability
p′ then Q′ preserves the one-session secrecy of x up to probability p′′(C) = p′(C) +
2p(C[[] | Qx], DS). A similar result holds for secrecy.

We can then apply the following technique. When we want to prove that Q0 preserves
the (one-session) secrecy of x, we transform Q0 by the transformations described in
Section 2 with V = {x}. By Propositions 1 and 3, we obtain a process Q′0 such that
Q0 ≈V

p Q′0. We use Propositions 4 or 5 to show that Q′0 preserves the (one-session)
secrecy of x and finally conclude that Q0 also preserves the (one-session) secrecy of x
up to a certain probability by Lemma 2.

Example 4 After the transformations of Example 3, the only variable access to x′k in the
considered process is let x′′k : Tk = x′k[u] and x′′k is not used in the considered process.
So by Proposition 4, the considered process preserves the one-session secrecy of x′′k (with
S = {x′k, x′′k}). By Lemma 2, the process of Example 1 also preserves the one-session
secrecy of x′′k up to probability 2(p′mac+p′enc)(C[[] | Qx], DS). (The runtimes of Qx and
DS can be neglected inside this formula.) However, this process does not preserve the
secrecy of x′′k , because the adversary can force several sessions of B to use the same key
x′′k , by replaying the message sent by A. Accordingly, the hypothesis of Proposition 5 is
not satisfied.

The criteria given in this section might seem restrictive, but in fact, they should
be sufficient for all protocols, provided the previous transformation steps are powerful
enough to transform the protocol into a simpler protocol, on which these criteria can then
be applied.

4. Proof Strategy

Up to now, we have described the available game transformations. Next, we explain how
we organize these transformations in order to prove protocols.

At the beginning of the proof and after each successful cryptographic transformation
(that is, a transformation of Section 2.2), the prover executes Simplify and tests whether
the desired security properties are proved, as described in Section 3. If so, it stops.

In order to perform the cryptographic transformations and the other syntactic trans-
formations, our proof strategy relies of the idea of advice. Precisely, the prover tries to
execute each available cryptographic transformation in turn. When such a cryptographic
transformation fails, it returns some syntactic transformations that could make the de-
sired transformation work. (These are the advised transformations.) Then the prover tries

to perform these syntactic transformations. If they fail, they may also suggest other ad-
vised transformations, which are then executed. When the syntactic transformations fi-
nally succeed, we retry the desired cryptographic transformation, which may succeed or
fail, perhaps with new advised transformations, and so on.

Examples of advised transformations include:

• Assume that we try to execute a cryptographic transformation, and need to rec-
ognize a certain term M of L, but we find in Q0 only part of M , the other parts
being variable accesses x[. . .] while we expect function applications. In this case,
we advise RemoveAssign(x). For example, if Q0 contains enc(M ′, xk, x

′
r) and

we look for enc(xm, kgen(xr), x
′
r), we advise RemoveAssign(xk). If Q0 con-

tains let xk = mkgen(xr) and we look for mac(xm,mkgen(xr)), we also ad-
vise RemoveAssign(xk). (The transformation of Example 2 is advised for this
reason.)

• When we try to execute RemoveAssign(x), x has several definitions, and there
are accesses to variable x guarded by find in Q0, we advise SArename(x).

• When we want to prove that x is secret or one-session secret, we have an assign-
ment let x[̃i] : T = y[M̃] in P , and there is at least one assignment defining y,
we advise RemoveAssign(y).
When we want to prove that x is secret or one-session secret, we have an as-
signment let x[̃i] : T = y[M̃] in P , y is defined by restrictions, y has several
definitions, and some variable accesses to y are not of the form let y′[ĩ′] : T =

y[M̃ ′] in P ′, we advise SArename(y).

5. Experimental Results

CryptoVerif has been tested on a number of protocols given in the literature. We proved
secrecy of keys for the Otway-Rees and Yahalom protocols as well as original and
corrected versions of the Needham-Schroeder shared-key and public-key and Denning-
Sacco public-key protocols, as reported in [23]. We proved authentication properties for
these protocols as well as for original and corrected versions of the Woo-Lam shared-key
and public-key protocols [22]. The proof succeeded in most cases (it failed for only 3
properties that in fact hold). For some proofs, for public-key protocols, we needed to
provide manual indications of the game transformations to perform, mainly because sev-
eral game transformations are sometimes applicable, and the proof succeeds only for a
particular choice of the applied game transformation.

For each proof, the prover outputs the sequence of games it has built, a succinct ex-
planation of the transformation performed between consecutive games, and an indication
of whether the proof succeeded or failed. When the proof fails, the prover still outputs a
sequence of games, but the last game of this sequence does not show the desired property
and cannot be transformed further by the prover. Manual inspection of this game often
makes it possible to understand why the proof failed: because there is an attack (if there
is an attack on the last game), because of a limitation of the prover (if it should in fact
be able to prove the property or to transform the game further), for other reasons (such
as the protocol cannot be proved from the given assumptions; this situation may not lead
immediately to a practical attack in the computational model).

CryptoVerif can also be used for proving cryptographic schemes, such as the FDH
signature scheme [25]. It has been used for studying more complex protocols: the Ker-
beros protocol, with and without its public-key extension PKINIT [24], as well as parts
of the record protocol and of the handshake protocol of TLS [19].

6. Conclusion

CryptoVerif produces proofs by sequences of games, in the computational model. The
security assumptions on primitives are given as observational equivalences, which are
proved once for each primitive and can be reused for proving many different protocols.
The protocol or cryptographic scheme to prove is specified in a process calculus. Cryp-
toVerif provides the sequence of games that leads to the proof and a bound on the prob-
ability of success of an attack. The user is allowed, but does not have, to provide manual
indications on the game transformations to perform.

The essential idea of simulating proofs by sequences of games in an automatic tool
can be applied to any protocol or cryptographic scheme. However, CryptoVerif applies
in a fairly direct way the security assumptions on the primitives and cannot perform deep
mathematical reasoning. Therefore, it is best suited for proving security protocols that
use rather high-level primitives such as encryption and signatures. It is more limited for
proving the security of such primitives from lower-level primitives, since more subtle
mathematical arguments are often needed.

Future work includes adding support for more primitives, for example associativ-
ity for exclusive or and primitives with internal state. Improvements in the proof strat-
egy and the possibility to give more precise manual hints would also be useful. Future
case studies will certainly suggest additional extensions. In the long term, it would be
interesting to certify CryptoVerif, possibly to combine it with the Coq-based framework
CertiCrypt [15]. Grand challenges include the proof of protocol implementations in the
computational model, by analyzing them (as started in [19] for instance) or by generating
them from specifications, and taking into account side-channel attacks.

Acknowledgments I warmly thank David Pointcheval for his advice and explanations of
the computational proofs of protocols. This project would not have been possible without
him. I also thank Jacques Stern for initiating this work. This work was partly supported
by the ANR ProSe project (decision ANR 2010-VERS-004).

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[2] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-
party setting. IEE Proceedings Information Security, 153(1):27–39, Mar. 2006.

[3] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the presence of key-
cycles. In ESORICS 2005, volume 3679 of LNCS, pages 374–396. Springer, Sept. 2005.

[4] R. Affeldt, D. Nowak, and K. Yamada. Certifying assembly with formal cryptographic proofs: the case
of BBS. In AVoCS’09, volume 23 of Electronic Communications of the EASST, Sept. 2009.

[5] A. Armando et al. The AVISPA tool for automated validation of Internet security protocols and appli-
cations. In CAV 2005, volume 3576 of LNCS, pages 281–285. Springer, July 2005.

[6] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computational soundness
proofs. In CCS’09, pages 66–78. ACM, Nov. 2009.

[7] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analysis. In CCS’06,
pages 370–379. ACM, Nov. 2006.

[8] M. Backes, M. Maffei, and D. Unruh. Computationally sound verification of source code. In CCS’10,
pages 387–398. ACM Press, Oct. 2010.

[9] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In CSFW’04, pages 204–218. IEEE, June 2004.

[10] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE Transactions on
Dependable and Secure Computing, 2(2):109–123, Apr. 2005.

[11] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In CCS’03, pages 220–230. ACM, Oct. 2003.

[12] G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech. Computational indistinguishability logic. In
CCS’10, pages 375–386. ACM Press, Oct. 2010.

[13] G. Barthe, B. Grégoire, S. Z. Béguelin, and Y. Lakhnech. Beyond provable security. Verifiable IND-
CCA security of OAEP. In CT-RSA 2011, volume 6558 of LNCS, pages 180–196. Springer, Feb. 2011.

[14] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for the working
cryptographer. In CRYPTO 2011, volume 6841 of LNCS, pages 71–90. Springer, Aug. 2011.

[15] G. Barthe, B. Grégoire, and S. Zanella. Formal certification of code-based cryptographic proofs. In
POPL’09, pages 90–101. ACM, Jan. 2009.

[16] S. Z. Béguelin, G. Barthe, S. Heraud, B. Grégoire, and D. Hedin. A machine-checked formalization of
sigma-protocols. In CSF’10, pages 246–260. IEEE, July 2010.

[17] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm. In Advances in Cryptology – ASIACRYPT’00, volume 1976 of LNCS,
pages 531–545. Springer, Dec. 2000.

[18] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Eurocrypt 2006, volume 4004 of LNCS, pages 409–426. Springer, May 2006. Ex-
tended version available at http://eprint.iacr.org/2004/331.

[19] K. Bhargavan, R. Corin, C. Fournet, and E. Zălinescu. Cryptographically verified implementations for
TLS. In CCS’08, pages 459–468. ACM, Oct. 2008.

[20] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW-14, pages
82–96. IEEE, June 2001.

[21] B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on Security
and Privacy, pages 86–100, May 2004.

[22] B. Blanchet. Computationally sound mechanized proofs of correspondence assertions. In CSF’07, pages
97–111. IEEE, July 2007. Extended version available as ePrint Report 2007/128, http://eprint.
iacr.org/2007/128.

[23] B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE Transactions
on Dependable and Secure Computing, 5(4):193–207, Oct.–Dec. 2008. Updated version available at
http://eprint.iacr.org/2005/401.

[24] B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally sound mechanized proofs for
basic and public-key Kerberos. In ASIACCS’08, pages 87–99. ACM, Mar. 2008.

[25] B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In CRYPTO 2006,
volume 4117 of LNCS, pages 537–554. Springer, Aug. 2006.

[26] S. Z. Béguelin, B. Grégoire, G. Barthe, and F. Olmedo. Formally certifying the security of digital
signature schemes. In IEEE Symposium on Security and Privacy, pages 237–250. IEEE, May 2009.

[27] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS’01,
pages 136–145. IEEE, Oct. 2001. An updated version is available at Cryptology ePrint Archive, http:
//eprint.iacr.org/2000/067.

[28] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and key
exchange protocols. In TCC’06, volume 3876 of LNCS, pages 380–403. Springer, Mar. 2006. Extended
version available at http://eprint.iacr.org/2004/334.

[29] H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence. In CCS’08,
pages 109–118. ACM, Oct. 2008.

[30] V. Cortier, H. Hördegen, and B. Warinschi. Explicit randomness is not necessary when modeling prob-
abilistic encryption. In ICS 2006, volume 186 of ENTCS, pages 49–65. Elsevier, Sept. 2006.

[31] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In
ESOP’05, volume 3444 of LNCS, pages 157–171. Springer, Apr. 2005.

[32] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Towards automated proofs for
asymmetric encryption schemes in the random oracle model. In CCS’08, pages 371–380. ACM, Oct.
2008.

[33] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Automated proofs for asymmetric
encryption. In Concurrency, Compositionality, and Correctness, volume 5930 of LNCS, pages 300–321.
Springer, 2010.

[34] J. Courant, C. Ene, and Y. Lakhnech. Computationally sound typing for non-interference: The case of
deterministic encryption. In FSTTCS’07, volume 4855 of LNCS, pages 364–375. Springer, Dec. 2007.

[35] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time se-
mantics for a protocol security logic. In ICALP’05, volume 3580 of LNCS, pages 16–29. Springer, July
2005.

[36] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound compositional logic for
key exchange protocols. In CSFW’06, pages 321–334. IEEE, July 2006.

[37] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT-29(12):198–208, Mar. 1983.

[38] S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181, June 2005. Available at http://eprint.iacr.org/2005/181.

[39] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal encryption in
the presence of active adversaries. In ESOP’05, volume 3444 of LNCS, pages 172–185. Springer, Apr.
2005.

[40] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In Computational Problems
in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

[41] P. Laud. Handling encryption in an analysis for secure information flow. In ESOP’03, volume 2618 of
LNCS, pages 159–173. Springer, Apr. 2003.

[42] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In
IEEE Symposium on Security and Privacy, pages 71–85, May 2004.

[43] P. Laud. Secrecy types for a simulatable cryptographic library. In CCS’05, pages 26–35. ACM, Nov.
2005.

[44] P. Laud and I. Tšahhirov. A user interface for a game-based protocol verification tool. In FAST2009,
volume 5983 of LNCS, pages 263–278. Springer, Nov. 2009.

[45] P. Laud and V. Vene. A type system for computationally secure information flow. In FCT’05, volume
3623 of LNCS, pages 365–377. Springer, Aug. 2005.

[46] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In TACAS’96,
volume 1055 of LNCS, pages 147–166. Springer, 1996.

[47] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries.
In TCC’04, volume 2951 of LNCS, pages 133–151. Springer, Feb. 2004.

[48] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time calculus for
the analysis of cryptographic protocols. Theoretical Computer Science, 353(1–3):118–164, Mar. 2006.

[49] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of comput-
ers. Commun. ACM, 21(12):993–999, Dec. 1978.

[50] D. Nowak. A framework for game-based security proofs. In ICICS 2007, volume 4861 of LNCS, pages
319–333. Springer, Dec. 2007.

[51] D. Nowak. On formal verification of arithmetic-based cryptographic primitives. In ICISC 2008, volume
5461 of LNCS, pages 368–382. Springer, Dec. 2008.

[52] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, Nov. 2004. Available at http://eprint.iacr.org/2004/332.

[53] G. Smith and R. Alpízar. Secure information flow with random assignment and encryption. In FMSE’06,
pages 33–43, Nov. 2006.

[54] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem
proving. In CSFW’06, pages 153–166. IEEE, July 2006.

[55] I. Tšahhirov and P. Laud. Application of dependency graphs to security protocol analysis. In TGC’07,
volume 4912 of LNCS, pages 294–311. Springer, Nov. 2007.

[56] T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In IEEE Symposium on
Research in Security and Privacy, pages 178–194, May 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

