
From Computationally-Proved Protocol Specifications to
Implementations and Application to SSH∗

David Cadé and Bruno Blanchet
INRIA Paris-Rocquencourt, Paris, France

{david.cade,bruno.blanchet}@inria.fr

Abstract

This paper presents a novel technique for obtaining implementations of security protocols, proved
secure in the computational model. We formally specify the protocol to prove, we prove this specifi-
cation using the computationally-sound protocol verifier CryptoVerif, and we automatically translate
it into an implementation in OCaml using a new compiler that we have implemented. We applied this
approach to the SSH Transport Layer protocol: we proved the authentication of the server and the se-
crecy of the session keys in this protocol and verified that the generated implementation successfully
interacts with OpenSSH. We explain these proofs, as well as an extension of CryptoVerif needed for
the proof of secrecy of the session keys. The secrecy of messages sent over the SSH tunnel cannot
be proved due to known weaknesses in SSH with CBC-mode encryption.

1 Introduction

The verification of security protocols is an important research area since the 1990s: the design of security
protocols is notoriously error-prone, and security errors cannot be detected by testing since they appear
only in the presence of a malicious adversary. There are basically two models for protocol verification.
The symbolic model, also called Dolev-Yao model, represents messages as terms in a term algebra,
and the attacker can only create terms in this algebra. The computational model represents messages
as bitstrings, and the attacker is a polynomial-time probabilistic Turing machine. This model is more
complex than the symbolic one, but models reality much more faithfully. Furthermore, even if the
protocol specification is proved secure in such a model, errors can appear at the implementation level:
errors may occur in implementation details left unspecified in the specification, or the specification may
not be correctly implemented. It is therefore important to make sure that the implementation is secure,
and not only the specification. Hence our goal is to obtain protocol implementations proved secure in the
computational model.

There are two ways of obtaining a secure protocol implementation. First, one can take an existing
implementation, analyze it to obtain a specification of the implemented protocol, and then prove that this
specification is secure. Second, one can prove secure the protocol specification we want to implement,
and then generate an implementation from it. We chose the second way for multiple reasons. First,
being sure that the protocol specification—the foundation on which the implementation is built—is cor-
rect before trying to implement it seems to be better than the opposite. Second, generating protocol
implementations is relatively easier than analyzing them; analyzing existing protocol implementations
not written with verification in mind is especially difficult, and very few methods can do that (see related
work below).

Hence we start from a protocol specification. We prove it secure in the computational model using
CryptoVerif [14, 13, 15], a protocol verifier in the computational model that can prove authentication
and secrecy properties. The generated proofs are sequences of games, like the manual proofs written by
cryptographers: the first game is the protocol specification, two consecutive games are distinguishable

∗This paper is an extended version of the work originally presented at the 6th International Conference on Availability,
Reliability and Security (ARES’12), Prague, Czech Republic, August 2012 [16].

1

{david.cade,bruno.blanchet}@inria.fr

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

only with negligible probability, and the desired security property is obviously true in the last game.
So, the desired property is true in the initial game with overwhelming probability. CryptoVerif also
provides a formula expressing the probability of success of an attack against the protocol, as a function
of the probability of breaking each primitive. The input file we give to this tool contains functional
assumptions (e.g., the decryption of the ciphertext with the correct key yields the plaintext) and security
assumptions (e.g., the encryption is IND-CPA) on the cryptographic primitives, a specification of the
protocol to verify in a probabilistic process calculus, and the security properties to prove.

We wrote a compiler that translates a CryptoVerif protocol specification into an implementation in
OCaml (http://caml.inria.fr). We chose this language as target for our compiler because it has
a clean semantics and is memory safe, which helps prove the compiler correct. OCaml is a functional
language, which facilitates the compilation because the CryptoVerif specification uses oracles that can
easily be translated into functions. A cryptographic library is available for OCaml, Cryptokit (http://
forge.ocamlcore.org/projects/cryptokit/). Our approach could obviously be adapted to other
target languages, such as Java or C, if desired. We added annotations to the CryptoVerif input language
in order to specify implementation details. These annotations specify how to divide a protocol into
several executable programs. For example, most key exchange protocols are divided into key generation,
client, and server. The annotations also specify how each cryptographic primitive is implemented. The
implementation of these primitives must satisfy the assumptions made in the specification.

We proved in [17] that this compiler preserves security. More precisely, we proved that, under
assumptions that formalize the assumptions mentioned at the end of Section 4, when an adversary has
probability p of breaking a security property in the generated code, then there also exists an adversary
that breaks this property with the same probability in the specification from which the generated code
comes. The main difficulty in this proof is that many technical details of the CryptoVerif and OCaml
semantics need to be taken into account.

We applied our approach to the SSH Transport Layer Protocol. We crafted a CryptoVerif specifi-
cation of this protocol. We then used CryptoVerif to obtain automatically a proof of the authentication
of the server to the client, and manually a proof of secrecy of the generated session keys. This proof
required us to develop a new extension of CryptoVerif to be able to distinguish cases depending on the
order of definition of variables. We then applied our compiler to this specification, and verified that the
obtained implementation successfully interoperates with OpenSSH.

Related Work Several tools already use the approach of generating an implementation from a specifi-
cation: AGVI [32] first generates a protocol from security requirements, proves its correctness using the
protocol verifier Athena, then compiles the protocol into Java. χ-spaces [25] provide a domain-specific
language for specifying protocols, which can be interpreted or compiled to Java. Spi2Java [31, 29] trans-
lates spi-calculus protocols into Java implementations; the soundness of this translation is proved in [29].
The protocols can also be verified using the automatic protocol verifier ProVerif. Spi2Java has been ap-
plied to the key exchange part of the SSH Transport Layer Protocol [28]. The JavaSPI framework [4]
is a variant of Spi2Java in which the modeling language is also Java itself, instead of the spi calculus.
All these approaches differ from our work in that they verify protocols in the symbolic model, while we
verify them in the more realistic computational model.

Other approaches analyze implementations instead of generating them. Many of these approaches
do not provide computational security guarantees. The tool CSur [21] analyzes protocols written in C by
translating them into Horn clauses, given as input to the H1 prover. Similarly, JavaSec [22] translates
Java programs into first-order logic formulas, given as input to the first-order theorem prover e-SETHEO.
Poll and Schubert [30] verified an implementation of SSH in Java using ESC/Java2: ESC/Java2 verifies
that the implementation does not raise exceptions, and follows a specification of SSH by a finite au-

2

http://caml.inria.fr
http://forge.ocamlcore.org/projects/cryptokit/
http://forge.ocamlcore.org/projects/cryptokit/

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

tomaton, but does not prove security properties. ASPIER [18] uses software model-checking to verify C
implementations of protocols, assuming the size of messages and the number of sessions are bounded.
This tool has been used to verify the main loop of OpenSSL 3. Dupressoir et al. [19] use the general-
purpose C verifier VCC to prove both memory safety and security properties of protocols.

The tool FS2PV [12] translates protocols written in a subset of the functional language F# into the
input language of ProVerif, to prove them in the symbolic model. This technique was applied to the
protocol TLS [10]. Similarly, Elijah [26] translates Java programs into LySa protocol specifications,
which can be verified by the LySatool. Aizatulin et al. [1] use symbolic execution in order to extract
ProVerif models from pre-existing protocol implementations in C. This technique currently analyzes a
single execution path of the protocol, so it is limited to protocols without branching. Together with
ASPIER [18], it is one of the rare methods that can analyze implementations not written specifically
for verification. The tools F7 and F? [9, 11, 33] use a dependent type system in order to prove security
properties of protocols implemented in F#, in the symbolic model. This approach scales well to large
implementations but requires type annotations, which facilitate automatic verification.

In contrast, the following approaches provide computational security guarantees. Similarly to FS2PV,
the tool FS2CV (http://msr-inria.inria.fr/projects/sec/fs2cv/) translates a subset of F# to
the input language of CryptoVerif, which can then provide a proof of the protocol in the computational
model. This tool has been applied to a very small subset of the TLS protocol [10]. The F7 approach has
also been extended to the computational model [20], but still requires type annotations to help the proof.
[1] provides computational security guarantees by applying the computational soundness result of [5]:
this result shows that, if a trace property (such as authentication) holds in the symbolic model, then it
also holds in the computational model, provided the protocol uses only cryptographic primitives in a
certain set (e.g. IND-CCA public-key encryption) and satisfies certain soundness conditions. The idea
of using a computational soundness result could also be applied to other techniques that prove protocols
in the symbolic model. However, as mentioned above, this restricts the class of protocols that can be
considered. To overcome this limitation, the authors of [1] have recently extended their approach to
generate a CryptoVerif model [2], thus getting proofs directly in the computational model, still with the
limitation to a single execution path. Our work nicely complements these approaches by allowing one to
generate implementations instead of analyzing them.

Outline Section 2 is a general presentation of our approach. Section 3 describes the specification
language used by our compiler and Section 4 details how this language is compiled into OCaml. Finally,
Section 5 presents the application of this compiler to the SSH protocol. This paper is an extended version
of the conference paper [16]. We add several examples and the explanation of the treatment of the insert
and get constructs that deal with key tables. We also add more details on our model of SSH; we explain
how CryptoVerif proves its security properties and we describe an extension of CryptoVerif that we had to
implement in order to achieve the proof of secrecy of the session keys in SSH. Our compiler, our model
and our implementation of the SSH Transport Layer protocol are available as part of the CryptoVerif
distribution at http://cryptoverif.inria.fr.

2 Overview of the Approach

Figure 1 presents an overview of our approach to obtain a proved implementation of a cryptographic
protocol. We proceed in two steps.

First, we write a CryptoVerif specification of this protocol. This specification contains a representa-
tion of the protocol in a process calculus described in the next section, and a list of security assumptions
on the cryptographic primitives, for example, encryption is IND-CPA. We prove that this specification

3

http://msr-inria.inria.fr/projects/sec/fs2cv/
http://cryptoverif.inria.fr

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

CryptoVerif
specification

CryptoVerif Our Compiler

Protocol Code

OCaml Compiler

Network Code
Cryptographic
primitives

ImplementationProof in the computational model

ResultToolInputCaption:

Figure 1: Overview of the approach

guarantees the desired security properties (e.g. secrecy, authentication, . . .) in the computational model
by using the CryptoVerif tool.

Second, the compiler we developed transforms the specification into protocol code. To build the
implementation, we furthermore need to write:

• the code corresponding to the exchange of messages across the network, which uses the results
given by the functions in the protocol code. This code can be considered as a part of the adversary,
and so it is not required to prove this part of the code.

• the code corresponding to the cryptographic primitives. This part is used by the protocol code, and
thus we must prove manually that the primitives satisfy the security assumptions we made in the
specification file.

We then use the OCaml compiler on these parts to obtain an implementation of the protocol. Therefore,
from a single protocol specification, we obtain both a proof that the protocol is secure in the computa-
tional model and an executable implementation of the protocol.

3 The Specification Language

CryptoVerif uses a process calculus in order to represent the protocol to prove and the intermediate
games of the proof. We survey this calculus, explaining the extensions we have implemented and the
annotations we have added to allow automatic compilation into an implementation.

4

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

M,N ::= terms
x variable
f (M1, . . . ,Mm) function application

Q ::= oracle declarations
0 nil
Q | Q′ parallel composition
foreach i≤ n do Q replication n times
O(x1 : T1, . . . ,xk : Tk) := P oracle declaration

P ::= oracle body
return(M1, . . . ,Mk);Q return
end end
x R← T ;P random number
x←M;P assignment
if M then P else P′ conditional
event e(M1, . . . ,Ml);P event
insert Tbl(M1, . . . ,Mk);P insert in table
get Tbl(x1 : T1, . . . ,xk : Tk) suchthat M in P else P′ get from table

Figure 2: Protocol representation language

3.1 Protocol Representation Language

The protocol is represented in the language of Figure 2. This language uses types denoted by T , which
are subsets of bitstring⊥ = bitstring∪{⊥} where bitstring is the set of all bitstrings and ⊥ is a special
symbol (used for example to represent the failure of a decryption). Some types are predefined: bool =
{true, false}, where false is 0 and true is 1; bitstring; and bitstring⊥.

The language also uses function symbols f . Each function symbol comes with a type declaration
f : T1× . . .×Tm → T , and represents an efficiently computable, deterministic function that maps each
tuple in T1× . . .×Tm to an element of T . Particular functions are predefined, and some of them use the
infix notation: M = N for the equality test, M 6= N for the inequality test, M∨N for the boolean or, M∧N
for the boolean and, ¬M for the boolean negation.

In this language, terms represent computations on bitstrings. The term x evaluates to the content of
the variable x. We use x,y,z,u as variable names. The function application f (M1, . . . ,Mm) returns the
result of applying the function f to M1, . . . ,Mm.

This language distinguishes oracle declarations and oracle bodies. An oracle declaration provides
some oracles, which can be called by the adversary, while an oracle body specifies the computations to
perform upon oracle call, and returns the result of the oracle. The oracle declaration 0 is empty: it de-
clares no oracle at all. The oracle declaration Q |Q′ is a parallel composition: it simultaneously provides
the oracles declared in Q and those in Q′. These oracles can be called in any order by the adversary. The
oracle declaration foreach i≤ n do Q provides n copies of the oracles declared in Q, indexed by i∈ [1,n],
where n is a parameter (an unspecified integer). This parameter is used by CryptoVerif to express the
maximum probability of breaking the protocol, which typically depends on the number of calls to the
various oracles. Finally, the oracle declaration O(x1 : T1, . . . ,xk : Tk) := P declares the oracle O, taking
arguments x1, . . . ,xk of types T1, . . . ,Tk respectively. The result of this oracle is computed by the oracle
body P.

5

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

The oracle body x R← T ;P chooses a new random number uniformly in T , stores it in x, and executes
P. Function symbols represent deterministic functions, so all random numbers must be chosen by x R← T .
Using deterministic functions facilitates the proofs of protocols in CryptoVerif by making automatic
syntactic manipulations easier: we can duplicate a term without changing its value. The assignment
x← M;P stores the value of M in x and executes P. The test if M then P else P′ executes P when M
evaluates to true and P′ otherwise. The construct event e(M1, . . . ,Ml);P executes the event e(M1, . . . ,Ml),
then runs P. This event records that a certain program point has been reached with certain values of
M1, . . . ,Ml , but otherwise does not affect the execution of the system. (Events only serve in specifying
authentication properties [13].) The construct return(M1, . . . ,Mk);Q returns the result M1, . . . ,Mk of the
oracle. Additionally, it makes available the oracles defined in Q; these oracles can then be called by the
adversary. The construct end terminates the oracle with an error, yielding control to the adversary.

The constructs insert and get handle tables, used for instance to store the keys of the protocol partic-
ipants. A table can be represented as a list of tuples; insert Tbl(M1, . . . ,Mk);P inserts the element (M1,
. . . ,Mk) in the table Tbl; get Tbl(x1 : T1, . . . ,xk : Tk) suchthat M in P else P′ tries to retrieve an element
(x1, . . . ,xk) in the table Tbl such that M is true. When such an element is found, it executes P with x1,
. . . ,xk bound to that element. (When several such elements are found, one of them is chosen randomly
with uniform probability. We cannot for instance take the first element found because the game trans-
formations made by CryptoVerif may reorder the elements. For these transformations to preserve the
behavior of the game, the distribution of the chosen element must be invariant by reordering.) When no
such element is found, P′ is executed.

The original CryptoVerif language does not include insert and get. Instead, it considers all variables
as arrays, and offers a construct for looking up values in arrays, find. The constructs insert and get
are intuitively easier to understand, closer to the constructs used by cryptographers, and much easier to
implement. However, arrays and find are very helpful for the automatic proofs performed by CryptoVerif,
as explained in [14]. Therefore, in order to implement insert and get, we first transform them into arrays
and find, so that CryptoVerif can run as before after this transformation.

The find construct has the following syntax:

find (
⊕m

j=1
u j1 ≤ n j1, . . . ,u jm j ≤ n jm j suchthat defined(M j1, . . . ,M jl j)∧M j then Pj) else P

This construct finds indices u j1, . . . ,u jm j such that M j1, . . . ,M jl j are defined and M j is true. If such indices
are found, it runs Pj. If no such indices can be found for any j, it runs P. More formally, this construct
computes the set S of elements j,a1, . . . ,am j where a1, . . . ,am j are replication indices such that all terms
M jk are defined and M j evaluates to true, after replacing each u jk with ak. If the set S is empty, no
instance of the replication indices could satisfy the conditions and so we continue with P. Otherwise, we
choose randomly an element in S, and if the chosen element is j0,a1, . . . ,am j0

we instantiate the variables
u j01, . . . ,u j0m j0

to a1, . . . ,am j0
and continue with Pj0 .

The transformation of insert and get into find proceeds by storing the inserted list elements in
fresh array variables, and looking up in these arrays instead of performing get. More precisely, when
insert Tbl(M1, . . . ,Mk);P is under the replications foreach i1 ≤ n1 do . . . foreach il ≤ nl do, it is trans-
formed into

y1[i1, . . . , il]←M1; . . . ;yk[i1, . . . , il]←Mk;P

where y1, . . . ,yk are fresh array variables, and we add (y1, . . . ,yk; i1 ≤ n1, . . . , il ≤ nl) in a set S′, to re-
member them. The construct get Tbl(x1 : T1, . . . ,xk : Tk) suchthat M in P else P′ is then transformed

6

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

into

find

 ⊕
(y1,...,yk;i1≤n1,...,il≤nl)∈S′

u1 ≤ n1, . . . ,ul ≤ nl suchthat
defined(y1[ũ], . . . ,yk[ũ])∧M{y1[ũ]/x1, . . . ,yk[ũ]/xk}
then x1← y1[ũ]; . . . ; xk← yk[ũ]; P


else P′

where ũ stands for u1, . . . ,ul . This construct looks in all arrays used for translating insertion in table
Tbl, for indices ũ such that y1[ũ], . . . ,yk[ũ] are defined, that is, an element has been inserted at indices ũ,
and M{y1[ũ]/x1, . . . ,yk[ũ]/xk} is true, that is, that element satisfies M. When it finds such an element, it
stores it in x1, . . .xk, and runs P. (When it finds several elements, one of them is chosen randomly with
uniform probability.) When it finds no element, it executes P′.

CryptoVerif also offers a pattern-matching construct. A function f : T1× . . .×Tm → T that can be
used for pattern-matching is declared with the attribute compos. This attribute means that f is injec-
tive and that its inverses are efficiently computable, that is, there exist efficiently computable functions
f−1

j : T→ Tj (1≤ j≤m) such that f−1
j (f (x1, . . . ,xm))= x j. We can then define the pattern-matching con-

struct let f (x1, . . . ,xm) = M in P else P′ as an abbreviation for y← M;x1 ← f−1
1 (y); . . . ;xm ← f−1

m (y);
if f (x1, . . . ,xm) = y then P else P′. This construct tries to extract the values of x1, . . . ,xn such that
f (x1, . . . ,xn) = M, and runs P when this extraction succeeds, and P′ when it fails. Also, we define the
construct let (=M) = M′ in P else P′ as if M = M′ then P else P′. We generalize this construct to let
pat = M in P else P′ where pat is built from compos functions, variable names, and equality to terms
=M.

Example 1. Let f : T1×T2 → T be a function with the compos attribute. Let f−1
1 : T → T1 and f−1

2 :
T → T2 be efficiently computable inverses of f .

The oracle body let f (=M,x) = M′ in P else P′ is an abbreviation of:

y←M′;x1← f−1
1 (y);x← f−1

2 (y); if f (x1,x) = y∧M = x1 then P else P′ .

If there exists a value x such that f (M,x) = M′, it runs P with that value of x, else it runs P′.

An else branch of if, get, or let may be omitted when it is else end. Similarly, end may be omitted
after a random choice, an assignment, an event, or a table insertion. A trailing 0 after a return may also
be omitted.

The original CryptoVerif language appears in two versions, using channels [14, 13] or oracles [15].
We use the version with oracles in this paper, because it is closer to OCaml code. (Oracles resemble
functions.) Our compiler also works on the version with channels. This language uses a simple type
system to check that bitstrings are of the appropriate type; this type system and the formal semantics
of this language are detailed in [14], for the version with channels. Additional constructs exist in this
language for calling oracles and for hiding oracles so that they cannot be called by the adversary. These
constructs are not necessary for encoding the protocol itself, so we omit them here.

Example 2. Let us consider a simple protocol in which the first participant A generates a nonce x, and
sends it to the second participant B encrypted under the shared secret key Kab: A→ B : {x}Kab . This
protocol can be modeled in CryptoVerif as follows:

Ostart() := rKab
R← keyseed; Kab← kgen(rKab);return();

(foreach i1 ≤ N do PA | foreach i2 ≤ N do PB)

PA = OA() := x R← nonce; s R← seed;return(enc(x,Kab,s))

PB = OB(m : bitstring) := let injbot(r′) = dec(m,Kab) in return()

7

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

The only oracle callable at the beginning is Ostart, which generates a symmetric encryption key Kab by
generating a random seed rKab and using the key generation algorithm kgen on it. It returns nothing.
The key Kab is available to the following oracles in the process, but is not given to the adversary. After
having called Ostart, one can call N times the oracles OA and OB. In the oracle OA, we generate a
nonce x, a seed for the encryption s, and return the encryption of x under the key Kab with the random
seed s. The oracle OB takes as argument m, which should be the message returned by the oracle OA.
It decrypts the message under the symmetric key Kab. A decrypted message is of type bitstring⊥: it can
be a bitstring or the ⊥ value, which means that decryption failed. The function injbot is the injection
that takes a nonce value and returns its value in bitstring⊥, which is different from ⊥. When decryption
succeeds, the oracle OB stores in r′ the result of the decryption, and returns normally. Otherwise, it
terminates with end (implicit in the omitted else branch of let).

3.2 Annotations for Implementation

The protocol specification language also includes annotations to specify which parts of the protocol will
be compiled into which OCaml modules, and which OCaml types, functions, and files correspond to the
CryptoVerif types, functions, and key tables. These annotations are simply ignored when CryptoVerif
proves the protocol.

A protocol typically includes several parts of code run by different participants, for instance a client
and a server. These parts of code will be included in different programs, so we split the protocol into mul-
tiple roles role that will be translated into different OCaml modules. The boundaries of roles are marked
as follows. The annotation role [x1 > "filex1", . . . ,xn > "filexn",y1 < "filey1", . . . ,ym < "fileym"]{ indi-
cates the beginning of the role role. It should be placed just above an oracle declaration Q. The indication
xi > "filexi" means that the variable xi will be stored in file filexi when it is defined. The variable xi can
then be used in other roles defined after the end of role; these roles will read it automatically from the
file filexi. The indication yi < "fileyi" means that the role role will read at initialization the value of the
variable yi from the files fileyi. The variable yi must be free in role (i.e. it is defined before the beginning
of role). A declaration x > "filex" in a role role′ above role implicitly implies x < "filex" in role when
role uses x: x is written to filex in role′ and read in role. All variables free in role role must be declared as
being read from a file in role, either explicitly or implicitly as mentioned above. All variables read from
or written to a file must be defined under no replication. (Otherwise, several copies of the variable would
have to be stored in the file.) Storing variables in files is useful for variables that are communicated
across roles, for example long-term keys that are set in a key generation program and later used by the
client and/or server programs. The closing brace } indicates the end of the current role. It must be placed
just after a return statement.

Example 3. Let us annotate the process we have seen in Example 2.

roleKeygen[Kab > "keyfile"]{Ostart() := . . .return()};
(foreach i1 ≤ N do PA | foreach i2 ≤ N do PB)

PA = roleA{OA() := . . .

PB = roleB{OB(m : bitstring) := . . .

We divide the process into three roles. First, the key generation role is represented by roleKeygen, contain-
ing just the oracle Ostart. We store the value of Kab in the file keyfile, in order to be able to read the value
of the key in the other roles. The role roleA, which contains the oracle OA, corresponds to the role of A,
and the role roleB, which contains the oracle OB, corresponds to the role of B. For these two roles, there
is no need to write the closing brace } because there is nothing after them.

8

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

The correspondence between CryptoVerif and OCaml types, functions, and tables is specified by
declarations in the input file. These declarations associate to each CryptoVerif type T :

• its corresponding OCaml type GT(T).

• the serialization function Gser(T) of type GT(T)→ string, which converts an element of type
GT(T) to a bitstring, and the deserialization function Gdeser(T) of type string→ GT(T), which
performs the inverse operation. These functions serve for writing values to files and for reading
them. When deserialization fails, it must raise the exception Bad file; this exception is raised only
when a file has been corrupted.

• the predicate function Gpred(T) of type GT(T)→ bool, which returns whether an OCaml element
of type GT(T) belongs to type T or not. Indeed, the CryptoVerif values of type T may correspond
only to a subset of the OCaml values of type GT(T).

• the random number generation function Grandom(T), of type unit→GT(T), which returns a ran-
dom element uniformly chosen in type T .

They also associate to each table Tbl the name Gtable(Tbl) of the file that contains that table, and to
each CryptoVerif function f of type T1× . . .×Tm→ T the corresponding OCaml function Gf(f) of type
GT(T1)→ . . .→GT(Tm)→GT(T).

These correspondences are specified in the specification by the following implementation declara-
tions in the CryptoVerif input file:

• implementation type T =GT(T) [options] sets the OCaml type corresponding to the CryptoVerif
type T . The possible options are:

– serial =Gser(T),Gdeser(T) sets the serialization and deserialization functions for type T .

– pred =Gpred(T) sets the predicate function.

– random =Grandom(T) sets the random number generation function.

• implementation type T = n [options] sets the length of the type T . The type T is then represented
by a bitstring of length n. If n is a multiple of 8, then T will be represented by a string: GT(T) =
string; if n = 1, then T will be represented by a boolean: GT(T) = bool. Otherwise, an error
occurs. The only allowed option is serial, which allows one to override the default serialization
and deserialization functions to choose a different representation of the bitstring. This sets the
functions Grandom(T) and Gpred(T) to correct values.

• implementation table Tbl =Gtable(Tbl) sets the file in which the table Tbl is written.

• implementation fun f =Gf(f) [options] sets the translation of the function f . If f has the compos
attribute, that is to say that f is injective, this declaration can take the option inverse = Gf−1(f),
which declares Gf−1(f) as the inverse function. If f is of type T1× . . .×Tm → T , this function
must be of type GT(T)→GT(T1)× . . .×GT(Tm). Gf−1(f) x must return a tuple (x1, . . . ,xm) such
that Gf(f) x1 . . . xm = x. If there is no such element, Gf−1(f) must raise Match fail. The function
Gf−1(f) is used for translating the pattern-matching construct into OCaml; for simplicity, we do
not detail this translation.

• implementation const f =Gf(f) sets the implementation of the function f that has no arguments
to the OCaml constant Gf(f).

9

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

Example 4. For instance, the declaration

implementation type nonce = "string" [serial = "id","deserial 64";
pred = "sizep 64";
random = "rand string 8"].

means that the CryptoVerif type nonce is implemented by the OCaml type string, with serialization func-
tion identity, deserialization function deserial 64 which is the identity for strings of 8 bytes (64 bits)
and raises Match fail for other strings, predicate function sizep 64 which returns true for strings of 8
bytes and false for other strings, and random number generation function rand string 8 which returns
random strings of 8 bytes. In other words, nonces are bitstrings of 64 bits, which we can abbreviate by

implementation type nonce = 64.

The declaration
implementation fun kgen = "kgen".

means that the CryptoVerif function kgen is implemented by the OCaml function kgen.

A trick can be used to provide, for the same function f , both an OCaml implementation and a
CryptoVerif definition of f from other functions. Indeed, CryptoVerif allows one to define f as a macro:
letfun f (x1 : T1, . . . ,xm : Tm) = M. Specifying an OCaml implementation for these macros is optional.
When the OCaml implementation is not specified, our compiler generates code according to the letfun
macro. When the OCaml implementation is specified, it is used when generating the OCaml code, while
the CryptoVerif macro defined by letfun is used for proving the protocol. This feature can be used,
for instance, to define probabilistic functions: the OCaml implementation generates the random choices
inside the function, while the CryptoVerif definition by letfun first makes the random choices, then calls
a deterministic function.

Example 5. We can define an encryption function that generates the random seed internally as follows:

letfun renc(x : bitstring,k : key) = s R← seed; enc(x,k,s).

where enc is a deterministic encryption function that takes the random seed as argument. We can give
an OCaml implementation for renc by

implementation fun renc = "renc".

Obviously, this OCaml function must also choose the random seed for encryption internally.

4 The Translation into OCaml

Our compiler automatically translates a specification written in the CryptoVerif language into OCaml.
Let us describe this translation.

The annotations of Section 3.2 split the CryptoVerif code into multiple parts corresponding to dif-
ferent roles. Our compiler translates each of these roles role into an OCaml module µrole. For each role
role, let Q(role) be the oracle declaration located between role [. . .]{ and the following closing braces
}. Q(role) is the CryptoVerif code for the role role. Our compiler translates the oracles of Q(role) into
OCaml functions. More precisely, the implementation of the module µrole consists of the init function,
which reads the values of the variables required by the oracles in Q(role) from the files, and returns
the functions corresponding to the oracles declared by Q(role). Functions corresponding to the oracles
declared after a return in Q(role) are not returned by init, but will be returned by that return, like
continuations. Hence, the available functions correspond exactly to the oracles that can be called.

10

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

Example 6. Suppose that the role role is defined by

role [. . .] {O1(. . .) := . . . ;return(M1);O2(. . .) := . . . ;return(M2)}

Then the generated OCaml module µrole provides a function init that returns a function that implements
oracle O1. When this function is called, it returns both the result of the oracle O1 (the value of M1) and
the function that implements oracle O2. That function just returns the result of O2, that is, the value of
M2.

This translation requires us to restrict the process when an oracle has several return statements: all
these return statements must return data of the same type and oracles of the same name and type. We
can work around this restriction as follows: when an oracle is missing at some return statements, we
add a dummy oracle that ends immediately. As usual in functional languages, functions are represented
by closures that contain a pointer to the code of the function and an environment that contains the free
variables of the function. We rely on the OCaml type system to guarantee that the environment of
closures is not accessed by the rest of the code, and in particular not sent directly to the adversary. The
rest of this section details how the function init is generated.

For simplicity, we rename the variables in the CryptoVerif code in order to have a unique name
for each variable. CryptoVerif already does this internally. Let Gvar be an injective function taking a
CryptoVerif variable name, and returning an OCaml variable name. Let us also denote by TM the type of
a CryptoVerif term M.

The function GM transforms a term M into an OCaml term, in the obvious way:

GM(x) =Gvar(x)

GM(f (M1, . . . ,Mm)) =Gf(f) (GM(M1)) . . . (GM(Mm))

The function oracles takes an oracle declaration Q and returns a list containing the oracles declared
in Q. For each oracle, it also returns a boolean that is true when the oracle is defined under foreach (so
can be called several times), and false otherwise. This function is defined as follows, where we denote
by ε the empty list:

oracles(0) = ε

oracles(Q1 | Q2) = oracles(Q1),oracles(Q2)

oracles(foreach i≤ n do Q) = (Q1, true), . . . ,(Qk, true) when

(Q1,b1), . . . ,(Qk,bk) = oracles(Q) for some b1, . . . ,bk

oracles(O(x1, . . . ,xk) := P) = (O(x1, . . . ,xk) := P, false)

This function is used in the generation of the init function in order to determine the oracles we can call
at the beginning of the role, and in the translation of the return statement to determine which closures to
give back to the caller.

In Figure 3, we define the function G that translates an oracle body into an OCaml term, as explained
below.

As mentioned in Section 3.2, a role is declared with variables read from and written to files. Let
write file be an OCaml function of type string→ string→ unit that takes a file name and the contents
to write and writes the contents to the file, and read file a function of type string→ string that takes a
file name and returns its contents. We define a function Gfile that writes a variable to a file when needed:
Gfile(x) = write file f (Gser(Tx) Gvar(x)) when variable x is written to file f in role role, that is, role is
annotated with x > f , and Gfile(x) = () when x is not written to a file.

11

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

G(x R← T ;P) = let Gvar(x) =Grandom(T) () in Gfile(x); G(P)

G(x←M;P) = let Gvar(x) =GM(M) in Gfile(x); G(P)

G(if M then P else P′) = if GM(M) then G(P) else G(P′)

G(event e(M1, . . . ,Mk);P) =G(P)

G(return(N1, . . . ,Nk);Q) = (GO(Q1,b1), . . . ,GO(Ql,bl),GM(N1), . . . ,GM(Nk))
when oracles(Q) = (Q1,b1), . . . ,(Ql,bl)

G(end) = raise Match fail

G(insert Tbl(M1, . . . ,Mk);P) =
add to table (Gtable(Tbl) Gser(TM1) GM(M1), . . . ,Gser(TMk) GM(Mk)); G(P)

Gfilter((x1, . . . ,xk),M) =
(function [Gvar(x1); . . . ;Gvar(xk)]→

let Gvar(x1) =Gdeser(Tx1) Gvar(x1) in . . . let Gvar(xk) =Gdeser(Txk) Gvar(xk) in
if GM(M) then (Gvar(x1), . . . ,Gvar(xk))
else raise Match fail

| → raise Bad file)

G(get Tbl(x1, . . . ,xk) suchthat M in P else P′) =
let list = read table Gtable(Tbl) Gfilter((x1, . . . ,xk),M) in
if list = [] then G(P′)
else let (Gvar(x1), . . . ,Gvar(xk)) = randoml list in

(Gfile(x1); . . . ;Gfile(xk);G(P))

Figure 3: Translation function G of an oracle body in OCaml

We translate x R← T ;P by binding the variable Gvar(x) to a random value in the type T , then writing
its contents to the appropriate file if required, and finally continuing on the translation of the rest of
the process P. We translate x← M;P in the same way, but we bind Gvar(x) to the result of GM(M),
which is the translation of the CryptoVerif term M into OCaml. The translation of the if construct is
straightforward. We simply ignore events in the translation, since they do not affect the execution of the
system.

We translate the return statement into an OCaml tuple containing the closures of the oracles that
become callable after that return (computed by the oracles function), and the translation of the terms
N1, . . . ,Nk. (The function GO is defined in Figure 4 and explained below.) end is translated into an
exception because we need to stop the execution of the oracle here, and one must be able to distinguish
whether we terminated on a return or on an end statement.

We translate the insert construct by simply adding to the appropriate file the serialization of the
translation of arguments of insert. This translation uses the function add to table of type string→
string list→ unit, which takes a table file and a list of strings that represents an element of the table Tbl,
and adds this element to the file. To translate a get construct, we use a function Gfilter((x1, . . . ,xk),M)
that takes an element of the table, returns its deserialization if it satisfies M, and raises Match fail
otherwise. We also use a function read table of type string→ (string list→ ′a)→ ′a list such that
read table fTbl filter reads the table file fTbl and returns the list of values filter e for all elements e of the
table such that filter e does not raise Match fail. Therefore, by read table Gtable(Tbl)Gfilter((x1, . . . ,xk)

12

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

GO(O(x1 : T1, . . . ,xk : Tk) := P, false) =
let token = ref true in

function (Gvar(x1), . . . ,Gvar(xk))→
if (!token) && (Gpred(T1) Gvar(x1)) && . . . && (Gpred(Tk) Gvar(xk)) then
(token := false;
G(P))

else raise Bad call

GO(O(x1 : T1, . . . ,xk : Tk) := P, true) =
function (Gvar(x1), . . . ,Gvar(xk))→

if (Gpred(T1) Gvar(x1)) && . . . && (Gpred(Tk) Gvar(xk)) then
G(P)

else raise Bad call

Figure 4: Translation of an oracle

Let x1 < f1, . . . ,xm < fm be the annotations of role role that indicate variables read from files (explicit or
implicit because of an annotation xi > fi in a role above role when xi is defined above role and used in
role).
Let oracles(Q(role)) = (Q1,b1), . . . ,(Qk,bk).

let token = ref true
let init = function ()→

if (!token) then
(token := false;
let Gvar(x1) =Gdeser(Tx1) (read file f1) in . . .
let Gvar(xm) =Gdeser(Txm) (read file fm) in

(GO(Q1,b1), . . . ,GO(Qk,bk)))
else raise Bad call

Figure 5: The init function for the module µrole

,M), we collect all elements of the table that satisfy the term M. If there is no such element, we continue
with the translation of the process P′. If there are such elements, we choose one of them randomly, we
bind the variables (Gvar(x1), . . . ,Gvar(xk)) accordingly and add them to their respective files if necessary,
and finally we continue with the translation of the process P.

An oracle O(x1, . . . ,xn) := P is transformed into a closure by the function GO shown in Figure 4. The
implementation differs depending on whether the oracle is under replication or not. If the oracle is not
under replication, it must be callable at most once, so we create a new boolean reference that we store in
token: token is true if and only if the oracle can still be executed. We initialize token to true. When we
execute the oracle, we set token to false, to prevent other executions. The function also checks that its
arguments are correct elements of their type by using the function Gpred, and then proceeds to execute
the translation of the oracle body P. If the arguments are not correct elements of their type, or if the
oracle is not under replication and has already been called, then it raises the exception Bad call without
executing the translation of P.

The implementation of the module µrole consists in the init function presented in Figure 5. It begins

13

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

let init = function ()→
if (!token) then
(token := false;
let Gvar(Kab) =Gdeser(key) (read file "keyfile") in

OA



let token = ref true in function()→
if (!token) then
(token := false;
let Gvar(x) =Grandom(nonce) () in
let Gvar(s) =Grandom(seed) in
(Gf(enc) (Gvar(x),Gvar(Kab),Gvar(s))))

else raise Bad call)
else raise Bad call

Figure 6: The module µroleA

by reading all the required files, and then returns closures for all oracles that are callable at the beginning
of the module. So, by calling this init function, the user gets access to the oracles present in the module.
The init function can be called only once, as guaranteed by the boolean token.

Example 7. The role roleA whose process is:

OA() := x R← nonce; s R← seed; return(enc(x,Kab,s))

and reads the shared key Kab from the file keyfile is translated in the OCaml module µroleA of Figure 6.
To use this module, the file keyfile must already have been generated. The network code calls the init

function to get a closure of the oracle OA. Then it can call this closure with argument () to get back the
encryption of the nonce x. The following OCaml code calls the init function and then calls the closure,
and stores the encryption of x in r:

let r = init () ()

The network code is then responsible for sending this encryption to B.

To make sure that this implementation behaves as expected, the network code, which is manually
written and calls this implementation, must satisfy certain constraints. This code must not use unsafe
OCaml functions (such as Obj.magic or marshalling/unmarshalling with different types) to bypass the
typesystem (in particular to access the environment of closures). We also require that this code does not
mutate the values received from or passed to functions generated by CryptoVerif. This can be guaranteed
by using unmutable types, with the above requirement that the typesystem is not bypassed. However,
OCaml typically uses string for cryptographic functions and for network input/output, and the type
string is mutable in OCaml. For simplicity and efficiency, the generated code uses the type string, with
the no-mutation requirement above. We also require that all data structures manipulated by the generated
code are non-circular. This is necessary because we use the OCaml structural equality to compare values,
and this equality may not terminate in the presence of circular data structures. This can be guaranteed
by requiring that all OCaml types corresponding to CryptoVerif types are non-recursive. We also require
that the network code does not fork after obtaining but before calling an oracle that can be called only
once (because it is not under a replication in the CryptoVerif specification). Indeed, forking at this point
would allow the oracle to be called several times. In general, forking occurs only at the very beginning
of the protocol, when the server starts a new session, so this requirement should be easily fulfilled. These
requirements could be verified by program analysis.

14

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

Finally, we require that the programs are executed in the order specified by the CryptoVerif speci-
fication. For instance, in general, the key generation programs must be executed before the client and
the server. We also require that several programs that insert elements in the same table are not run con-
currently, to avoid conflicting writes. This requirement could be enforced using locks, but in practice,
it is generally obtained for free if the programs are run in the intended order. We also require that the
files used by the generated code are not read or written by other software, as this could obviously break
security.

5 An Application: SSH

This section applies our work to an implementation of the Secure Shell (SSH) protocol. We first recall the
protocol, then present our model, the proofs of the security properties, and the generated implementation.

5.1 Description of the Protocol

The SSH protocol is a protocol that permits a client to contact a server and run an application on it
securely. When a session is established, the client and the server are authenticated and data runs through
a secure channel to ensure its privacy and integrity.

SSH (version 2.0) is divided in three parts [34]. The SSH Transport Layer Protocol [36] authenti-
cates the server to the client and establishes a secure tunnel for the other parts. This secure tunnel is
implemented using encryption and MAC (message authentication code), with keys chosen by a Diffie-
Hellman key exchange. The tunnel aims to guarantee the privacy and integrity of the data going through.
The SSH Authentication Protocol [35] authenticates the client. The SSH Connection Protocol [37] mul-
tiplexes multiple channels through the tunnel.

We concentrated our efforts on the Transport Layer part. In Figure 7, we present an overview of this
part. The key exchange part consists of four groups of messages:

1. The client and the server send their identification string, which specifies the version of SSH they
use.

2. Then the server sends to the client the lists of the cryptographic algorithms for key exchange,
signature, encryption, MAC, and compression it can use in order of preference, and the client sends
the list of cryptographic algorithms it supports. Based on this information, the protocol chooses
which algorithms to use. Our implementation uses diffie-hellman-group14-sha1, RSA signature,
AES128-CBC, HMAC-SHA1, and no compression as algorithms, respectively. SSH specifies
other algorithms as well. Most of them would be very easy to include in our implementation; still,
the additional counter modes encryptions specified in [8] raise an additional difficulty as discussed
below in Section 5.5.

3. Then the actual key exchange takes place. The key exchange messages depend on the chosen key
exchange algorithm. The algorithm we use relies on a group defined in [23]. Let p be a large prime
and g be a generator of a subgroup of Z?

p.

First, the client chooses a random exponent x and sends to the server e = gx mod p.

Then the server chooses a random exponent y and computes f = gy mod p, the shared key K =
ey mod p, and the SHA1 hash H of the messages previously sent by the client and the server, the
server public host key pks, f , and K. It then signs this hash with its private host key skS. Let
s = sign(H,skS) be this signature. It finally sends back pks, f , and s.

15

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

Key exchange:

Client C Message Server S

1.

{ idC=SSH-2.0-versionC−−−−−−−−−−−−→
idS=SSH-2.0-versionS←−−−−−−−−−−−−

2.

{ KEX INIT,cookieC,algosC−−−−−−−−−−−−−−→
KEX INIT,cookieS,algosS←−−−−−−−−−−−−−−

3.

{
x R← [2,q−1],e = gx KEXDH INIT,e−−−−−−−−−→ y R← [1,q−1], f = gy

K = f x KEXDH REPLY,pkS, f ,sign(H,skS)←−−−−−−−−−−−−−−−−−−− K = ey

4.

{
pkS,sign(H,skS) ok? NEWKEYS−−−−−−→

NEWKEYS←−−−−−−

where H = SHA1(idC, idS,cookieC,algosC,cookieS,algosS,pkS,e, f ,K)

Tunnel keys:
sessionid = H

IVC = SHA1(K,H,”A”,sessionid)
IVS = SHA1(K,H,”B”,sessionid)

Kenc,C = SHA1(K,H,”C”,sessionid)
Kenc,S = SHA1(K,H,”D”,sessionid)

KMAC,C = SHA1(K,H,”E”,sessionid)
KMAC,S = SHA1(K,H,”F”,sessionid)

Tunnel:

Client C
enc(Kenc,C,packet,IVC),MAC(KMAC,C,sequence numberC‖packet)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Server Senc(Kenc,S,packet,IVS),MAC(KMAC,S,sequence numberS‖packet)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

where packet = packet length‖padding length‖payload‖padding

Figure 7: Overview of the SSH Transport Layer Protocol

The client must then verify that pks is indeed the key for the server it intended to reach, then
compute the shared key K = f x mod p, the hash H in the same manner as the server, and then
verify the signature.

4. When the client has verified the server’s message, it sends a “new keys” message declaring that the
key they agreed upon is to be used afterwards, and the server acknowledges this by also sending
the same message.

From the values of H and K, SSH then generates two encryption keys (one for client to server mes-
sages, and one for server to client messages) Kenc,C and Kenc,S, two initialization vectors (IVs) for
the encryption IVC and IVS, and two keys for MAC KMAC,C and KMAC,S, by computing hashes of H,
K, and different constants. The forthcoming messages in the SSH protocol will be encrypted and a
MAC will be computed based on the clear message and on a sequence number that is incremented
at each message.

Each message of the protocol, save the identification string messages, begins with five bytes indi-

16

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

cating the size of the message (first four bytes) and the size of the random padding (one byte) present
after the message, and is padded to a multiple of the block size of the encryption scheme (or 8, at the
beginning when the encryption scheme is not chosen yet).

5.2 Our Model of SSH in CryptoVerif

We have modeled the SSH Transport Layer Protocol in the CryptoVerif specification language. In our
model, the first role corresponds to the key generation. Its oracle generates the public/private key pair
pkS,skS of the server, and returns the public part of the key to the adversary. After the execution of this
role, one can execute N times a client and N times a server.

To illustrate our model of SSH, we give the server process in Figure 8. An adversary can give to the
protocol malformed messages, so that the server and the client may have different values for the same
variable. So, for a given variable x of the protocol, we denote by xS the variable the server uses to hold x,
and by xC the variable the client uses to hold x.

The protocol begins by exchanging the identification strings. Since this exchange requires no cryp-
tography, it is not included in the CryptoVerif model but is done by the network code, part of the adver-
sary. The identification strings idC and idS are given as argument to the first oracle that requires them;
hence, on Line 5, the oracle key exchange2S takes idCS and idSS as arguments.

Then in the protocol, we have the algorithms negotiation phase, that is done in the first oracle
negotiationS on Line 1. It first generates a random cookie cookieSS. The function concatm is an in-
jective function that concatenates a message tag with a bitstring. All functions whose name begins with
concat are injective functions that concatenate their arguments. On Line 3, we create the payload of the
negotiation packet using these concatenation functions. Then, we pad the payload accordingly to the
specification with pad to get a packet that we return on Line 4 to the adversary. This part cannot be done
by the adversary, because we need to be sure that the cookie is randomly generated.

Then, the client sends in a similar KEX INIT packet containing the algorithms the client supports and
the cookie of the client. It then sends the first message of the key exchange KEXDH INIT. The server
must then send back the next message KEXDH REPLY. This is done in the oracle key exchange2S on
Line 5. It takes idCS, idSS as we said before, and the packets m1 and m2 corresponding to the KEX INIT
and KEXDH INIT messages of the client. We first obtain the payload corresponding to the negotiation
packet m1 on Line 6 by using the function unpad. This function takes a packet and returns its payload if
it is a valid packet and ⊥ otherwise. Next, we verify on Line 7 that this payload is indeed a KEX INIT
message and we obtain the values of the client cookie cookieCS and the list of algorithms of the client
nsCS. Next, we verify that the algorithms are compatible with the algorithms of the server on Line 8.
We deconstruct the KEXDH INIT packet m2 as above, we randomly generate yS, and compute fS, KS

and HS. The hash function hash takes a key hk that represents the choice of the algorithm of the hash
function. (This key is present in the cryptographic model, but not in the implementation.) On Line 12,
we execute the event endS that is used in the proof of authentication (see Section 5.3). We sign the hash
HS on Line 13, and return the KEXDH REPLY packet on Line 14.

After verifying that this message is correct, the client sends back to the server a NEWKEYS packet.
The oracle key exchange4S on Line 15 takes this packet and also returns a NEWKEYS packet.

At this point, the client and the server have agreed upon the values K and H to create the tunnel IVs,
encryption and MAC keys. The oracle get keysS on Line 18 takes nothing, and computes these keys.
The function genIVC is defined as follows:

letfun genIVC(hk : hkey,K : G,H : hash,sid : hash) =
iv of hash(hash(hk,concat4(K,H,"A",sid))).

The function genIVC generates the SHA1 hash as shown in Figure 7 (Tunnel keys), and truncates this

17

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

1 negotiationS() :=
2 cookieSS

R← cookie;
3 initSS← concatm(KEX INIT,concatKEX INIT(cookieSS,negotiation string));
4 return(pad(initSS));
5 key exchange2S(idCS : bitstring, idSS : bitstring,m1 : bitstring,m2 : bitstring) :=
6 let injbot(initCS) = unpad(m1) in
7 let concatm(=KEX INIT,concatKEX INIT(cookieCS,nsCS)) = initCS in
8 if (check algorithms(nsCS)) then
9 let injbot(concatm(=KEXDH INIT,bitstring of G(eS))) = unpad(m2) in

10 yS
R← Z; fS← exp(g,yS); KS← exp(eS,yS);

11 HS← hash(hk,concat8(idCS, idSS, initCS, initSS,pkS,eS, fS,KS));
12 event endS(idCS, idSS, initCS, initSS,pkS,eS, fS,KS,HS);
13 sS← sign(block of hash(HS),skS);
14 return(pad(concatm(KEXDH REPLY,concatKEXDH REPLY(pkS, fS,sS))));
15 key exchange4S(m : bitstring) :=
16 let injbot(nkCS) = unpad(m) in let concatm(=NEWKEYS,=null string) = nkCS in
17 return(pad(concatm(NEWKEYS,null string)));
18 get keysS() :=
19 IVCS← genIVC(hk,KS,HS,HS); IVSS← genIVS(hk,KS,HS,HS);
20 Kenc,CS← genKenc,C(hk,KS,HS,HS); Kenc,SS← genKenc,S(hk,KS,HS,HS);
21 KMAC,CS← genKMAC,C(hk,KS,HS,HS); KMAC,SS← genKMAC,S(hk,KS,HS,HS);
22 return(IVCS, IVSS,HS);
23 (foreach j ≤ N′ do
24 tunnel sendS(payload : bitstring, IVS : IV,sequence numberS : uint32) :=
25 packet← pad(payload);
26 return(concatem(enc(packet,Kenc,SS, IVS),
27 mac(concatnm(sequence numberS,packet),KMAC,SS)))

28 | foreach j ≤ N′ do
29 tunnel recv1S(m : bitstring, IVC : IV) :=
30 let injbot(m1) = dec(m,Kenc,CS, IVC) in
31 return(get size(m1));
32 tunnel recv2S(m : bitstring, IVC : IV,m′ : mac,sequence numberC : uint32) :=
33 let injbot(m2) = dec(m,Kenc,CS, IVC) in
34 let packet = concat(m1,m2) in
35 if (check mac(concatnm(sequence numberC,packet),KMAC,CS,m′)) then
36 let injbot(payload) = unpad(packet) in
37 return(payload)).

Figure 8: The server role in the SSH model

18

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

hash by function iv of hash to obtain a valid IV. The other IV, and the encryption and MAC keys are com-
puted in a similar way. Next, we return the IVs and the session identifier to the network code on Line 22.
SSH with AES128-CBC (or other CBC mode encryptions) uses CBC mode [24, Section 7.2.2 (ii)] with
chained IVs, that is, the IV for the next message is the last block of ciphertext. Since CryptoVerif does
not allow maintaining a mutable state across several oracle invocations, we simply get the IV from the
network code which keeps in memory the last block of ciphertext it saw. That is why we return the
initial IVs to the network code. The session identifier is required in the next parts of the protocol that we
implemented in the network code.

We model the SSH tunnel by oracles that get an encrypted packet from the network and return the
clear payload to the application, and get a clear payload from the application and return the corresponding
encrypted packet to the network code. After the return on Line 22, we can call the tunnel sending and
receiving parts N′ times.

Sending a packet is implemented by the oracle tunnel sendS on Line 24 taking a payload, the current
server to client IV, and the sequence number. We need to pass the sequence number as argument, since
we cannot keep it in a state in CryptoVerif. We pad the payload, yielding a packet. We encrypt this
packet, append the MAC of the sequence number and the packet, and return the obtained message on
Line 26.

The packets after the key exchange are completely encrypted under the key derived from the key
exchange, the first five bytes containing the size of the packet included. Therefore, an implementation
must decrypt the first block of the packet to get its size, then input the rest of the packet, decrypt it, and
then check that the MAC that follows in the stream is correct. So we implemented receiving a packet by
two successive oracles: first, the oracle tunnel recv1S on Line 29 that takes the first block of the packet
and the current client to server IV, decrypts this block, and returns the size of the packet on Line 31. The
network code can then input a packet of the required length, and call the second oracle tunnel recv2S on
Line 32 that takes the rest of the packet, its MAC, IV, and the sequence number corresponding to this
message, checks the MAC and returns the decrypted payload if the MAC is correct.

5.3 Proof of Authentication of the Server

We have proved the authentication of the server in the computational model automatically by using
CryptoVerif, assuming the RSA signature is UF-CMA (unforgeable under chosen message attacks) and
the SHA1 hash function is collision-resistant. The authentication property shows that each session of the
client C with the server S corresponds to a distinct session of the server S with the client C, and that the
client C and the server S share all protocol parameters: identification strings, algorithm lists, pkS, e, f ,
K, and H.

More formally, we define the events:

event endC(bitstring,bitstring,bitstring,bitstring,spkey,G,G,G,hash).
event endS(bitstring,bitstring,bitstring,bitstring,spkey,G,G,G,hash).

where event endC occurs in the client just after he verifies the signature of the server, and event endS
occurs in the server just after he computes HS (line 12 of Figure 8). The first four arguments of these
events correspond to the messages exchanged in the session, two for the identification strings and two
for the negotiation messages. The fifth argument corresponds to the public key of the server. The sixth
and seventh arguments are the group elements e and f . So the first seven messages correspond to the
messages passed between the client and the server in a session until the end of the key exchange phase.
The eighth argument corresponds to the shared key K and the last argument corresponds to the hash H.

19

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

We ask CryptoVerif to prove the following properties:

∀vc : bitstring,vs : bitstring, ic : bitstring, is : bitstring, pk : spkey,x : G,y : G,k : G,h : hash;
inj: endC(vc,vs, ic, is, pk,x,y,k,h) =⇒ inj: endS(vc,vs, ic, is, pk,x,y,k,h) ,

(1)

∀vc : bitstring,vs : bitstring, ic : bitstring, is : bitstring, pk : spkey,x : G,y : G,k : G,h : hash,
k′ : G,h′ : hash;
endC(vc,vs, ic, is, pk,x,y,k,h)∧ endS(vc,vs, ic, is, pk,x,y,k′,h′) =⇒ k = k′∧h = h′ .

(2)

Property (1) means that each execution of event endC corresponds to a distinct execution of event endS,
with the same arguments. (The indication inj: means that the correspondence is injective, that is, two
executions of endC cannot correspond to the same execution of endS.) Property (2) means that, if events
endC and endS are executed with the same first seven arguments, then their last two arguments are also
the same, that is, if the client and server exchange the same public messages, then the key and the hash
they compute are the same.

The proof found by CryptoVerif is the following:

1. CryptoVerif first simplifies the initial game. In particular, it transforms the insert and get con-
structs into find constructs.

2. After these transformations, it can prove Property (2), because, if the first seven arguments of the
events endC and endS are equal, the eighth and ninth are computed in the same manner from the
first seven, so they are equal.

3. Next, CryptoVerif replaces the secret and public keys of the server, skS and pkS, with their values,
sskgen(r) and spkgen(r) respectively, where r is a random number and sskgen and spkgen are the
key generation functions for the signature scheme. This replacement allows CryptoVerif to apply
the security assumption on the signature in the next step.

4. Next, CryptoVerif transforms the game by relying on the assumption that the signature scheme
is UF-CMA. Indeed, by the UF-CMA property, up to negligible probability, the adversary cannot
forge a signature, so the verification of the signature in the client, check(mC,pkSC,sC) where mC =
block of hash(HC) and pkSC = pkS, can succeed only if the message mC has been signed under
skS. Moreover, the only signature under skS occurs in the server (line 13 of Figure 8). CryptoVerif
transforms this signature by first storing block of hash(HS) in mS, then computing sign(mS,skS).
It replaces the verification of the signature in the client, check(mC,pkSC,sC), with a find that looks
for a signature of mC under skS, that is, a find that looks for a session u of the server such that
mS[u] is defined and mS[u] = mC. (Recall that variables are implicitly arrays; mS[u] is the value of
mS in session u of the server.)

5. The obtained game is then simplified. In particular, the equality mS[u] = mC above becomes
block of hash(HS[u]) = block of hash(HC), that is, HS[u] = HC since block of hash is injective.
Hence, this equality becomes hash(hk,concat8(idCS[u], idSS[u], initCS[u], initSS[u],pkS,eS[u], fS[u],
KS[u])) = hash(hk,concat8(idCC, idSC, initCC, initSC,pkSC,eC, fC,KC)). Since hash is collision-
resistant and concat8 is injective, this equality becomes idCS[u] = idCC∧ idSS[u] = idSC∧ initCS[u] =
initCC ∧ initSS[u] = initSC ∧pkS = pkSC ∧ eS[u] = eC ∧ fS[u] = fC ∧KS[u] = KC.

CryptoVerif can then prove Property (1). In the initial game, the event endC is located after the sig-
nature verification in the client. Therefore, when the client executes event endC(idCC, idSC, initCC,
initSC,pkSC,eC, fC,KC,HC), the find that replaces signature verification succeeds, so mS[u] is de-
fined, which implies that the server has executed event endS(idCS[u], idSS[u], initCS[u], initSS[u],pkS,

20

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

eS[u], fS[u],KS[u],HS[u]) located above the definition of mS, and the condition mS[u] = mC simpli-
fied above holds, so the arguments of these events are equal. Moreover, two distinct executions
of endC have distinct arguments eC up to negligible probability (because eC = gx for a random
exponent x), so they correspond to two distinct executions of endS, which proves injectivity.

5.4 Proof of Secrecy of the Session Keys

We have also proved the secrecy of the session keys obtained by key exchange (the encryption keys,
MAC keys, and initialization vectors for encryption), that is, an adversary has a negligible probability of
distinguishing these keys from random numbers, assuming the group used by the key exchange satisfies
the CDH (Computational Diffie-Hellman) assumption, the SHA1 hash function is a random oracle, and
the RSA signature is UF-CMA. This proof is performed on a protocol that stops just after key exchange,
because the cryptographic secrecy of the keys is broken as soon as they are used by the protocol. More-
over, we prove secrecy for the keys computed by the client; the keys of the server are not always secret,
because the server may also execute sessions with the adversary. The proof is performed by CryptoVerif
with manual guidance of the user. It also required an extension of CryptoVerif, so that it can perform
case distinctions depending on the order of definitions of variables. This extension will also be useful to
prove other cryptographic protocols with CryptoVerif. We explain this extension when it is used in the
proof (Step 10 below).

In our proof of secrecy of the session keys, we also prove the authentication property again assuming
SHA1 is a random oracle (which implies collision resistance). With the random oracle model, we need
to provide the adversary with a hash oracle OH , so that it can compute hashes. This oracle OH takes as
argument a bitstring h and returns its hash:

OH(h : bitstring) := return(hash(hk,h)) .

We provided CryptoVerif with proof indications to help the tool prove this property, as follows:

1. CryptoVerif first simplifies the initial game automatically. In particular, it transforms the insert
and get constructs into find constructs.

2. By the command success, we ask CryptoVerif to try to prove the desired security properties. It
manages to prove Property (2), as in Section 5.3. The other properties cannot be proved yet.

3. The hash function hash is used with two kinds of arguments. It is used to compute the hash H
with the concatenation by concat8 of eight arguments corresponding to the messages in the current
session, and it is also used to compute the generated keys with argument concat4(K,H,c,H) for
several constants c. To simplify the game obtained after applying the random oracle assumption
(Step 4), we distinguish in the hash oracle OH these two uses of the hash function.

By command
insert 350 let concat8(a1,a2,a3,a4,a5,a6,a7,a8) = h in

we add a let at the beginning of the oracle OH . (The occurrence 350 corresponds to the be-
ginning of OH . Occurrence numbers for each program point in the game can be shown by
command show game occ.) Then OH becomes let concat8(a1,a2,a3,a4,a5,a6,a7,a8) = h in
return(hash(hk,h)) else return(hash(hk,h)). We also insert let concat4(b1,b2,b3,b4) = h in in
the else branch of the previous let. So the oracle is now split in three, where the first part is for
concat8 arguments, the second part for concat4 arguments, and the last part for other arguments.

21

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

4. By command crypto rom(hash), we apply the random oracle assumption on the function hash.
CryptoVerif transforms each call to the function hash into a lookup in the previous calls to the
function hash: if the same hash has already been computed, we return the same result; otherwise,
we return a fresh random hash.

5. By command crypto uf cma(signr), we apply the UF-CMA transformation after replacing skS and
pkS with their values, as in Section 5.3, and we simplify the obtained game. (The function signr is
the deterministic signature function, which takes random coins as argument. The function sign is
defined by letfun as in Example 5. It generates random coins and calls signr with these coins.)

6. By command success, CryptoVerif proves Property (1). Instead of using collision resistance as it
did in Section 5.3, it relies on the negligible probability of collisions between fresh random hashes.

7. In order to prove the secrecy of the keys generated by the client, we want to transform the game
using the CDH assumption. This transformation basically transforms equality tests of the form
M = exp(g,mult(x,y)) into false when the only usages of the random exponents x and y are
for computing exp(g,x), exp(g,y) and equality tests of the form M = exp(g,mult(x,y)). In-
deed, the CDH assumption says that one has a negligible probability of computing M such that
M = exp(g,mult(x,y)) knowing exp(g,x), exp(g,y) for random exponents x and y. In order to use
this transformation, we need to eliminate as many usages of x and y as possible.

The game contains a process of the following form in the client:

KC← exp(fC,xC);
find w′ ≤ N suchthat defined(idCS[w′], . . . , fS[w′])∧

idCC = idCS[w′]∧ . . .∧ fC = fS[w′] then
. . . IVCC← . . .
⊕ w′′ ≤ NH suchthat defined(a1[w′′], . . . ,a8[w′′])∧

idCC = a1[w′′]∧ . . .∧KC = a8[w′′] then . . . else . . .

(3)

This find tests whether there exists a session of the server indexed by w′ that has exactly the same
messages as the current session of the client, and if this is the case, it generates the session keys.
In the other then branch and in the else branch of this find, we do not generate the keys.

We use an insert command to add the following find:

find w≤ N suchthat defined(idCS[w], . . . , fS[w])∧
idCC = idCS[w]∧ . . .∧ fC = fS[w] then

(4)

above the definition of KC in (3). The rest of the code following the find (4) is duplicated in the
then and else branches of that find.

In subsequent simplifications (Step 9 below), in the find (3) that occurs in the else branch of (4),
the first then branch is removed, because when we take the else branch of (4), no w satisfying the
condition can be found, so also no w′′ satisfying the same condition, hence we never take the first
then branch of (3). The find (3) that occurs in the then branch of (4) is transformed into its first
then branch, because when we take the then branch of (4), (3) always finds a w′ equal to w. As a
result, the usage of KC in KC = a8[w′′] disappears when the condition of (4) holds. All other usages
of KC when this condition holds are of the form M = exp(g,mult(x,y)), so they can be handled by
the CDH assumption.

22

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

8. To continue helping CryptoVerif remove usages of x and y, we distinguish cases depending on
whether the server runs a session with the honest client or with the adversary. We use an insert
command to insert the find:

find v≤ N suchthat defined(eC[v])∧ eC[v] = eS then (5)

before the creation of the shared Diffie-Hellman key KS in the server (middle of line 10 in Figure 8).
This allows us to distinguish the case in which the group element eS of the server comes from the
client (then branch) from the case in which eS comes from the adversary (else branch).

9. By command simplify, CryptoVerif simplifies the game. In particular, it renames the variable KS

into two variables, KS1 for the variable KS defined in the then branch of the find (5) and KS2 for
the one defined in the else branch of this find.

10. By command crypto cdh(exp), we transform the game using the CDH assumption. CryptoVerif
automatically performs some preparatory steps before actually using CDH, and simplifies the game
after applying CDH.

Our extension is applied in the simplification that follows the application of CDH. Let us first
explain it. After applying CDH, we arrive at a game of the following form:

foreach i≤ N do . . . key exchange2S(. . .) := . . .
find v≤ N suchthat defined(eC[v])∧ eC[v] = eS then . . . (comes from (5))
else KS2← exp(eS,yS); . . .

| foreach j ≤ N do . . . key exchange1C(. . .) := . . .
xC

R← Z;eC← exp(g,xC); . . .
find w≤ n suchthat defined(eS[w], . . .)∧ . . .∧ (eC = eS[w]) then
. . . (comes from (4))
if defined(KS2[w]) then . . . else P

We want to prove that the condition defined(KS2[w]) of the last test cannot be satisfied. Assum-
ing that we reach the last test and KS2[w] is defined, we have taken the else branch of the find
in key exchange2S in the run of index w, so at the definition of KS2[w], we have that, for all v,
defined(eC[v])∧ eC[v] = eS[w] does not hold. We have two cases:

• If the variable eC[j] (the value of eC with the current index j, also denoted eC) is defined be-
fore KS2[w], then at the definition of KS2[w], eC[j] was defined and for all v, defined(eC[v])∧
eC[v] = eS[w] does not hold. Taking v = j, defined(eC[j])∧ eC[j] = eS[w] does not hold, so
eC[j] 6= eS[w]: the condition of the last find construct is false in this case, so we cannot reach
the last test.

• Otherwise, the variable eC[j] is defined after KS2[w], so xC[j] is defined after eS[w]. Since
xC[j] is chosen randomly after eS[w], it is independent of eS[w], so eC[j] is a random element
chosen uniformly in G independent of eS[w]. Therefore, the probability that eC[j] = eS[w] is
1/|G|. We eliminate this collision, which happens with negligible probability, so that we also
have eC[j] 6= eS[w], so we also cannot reach the last test.

This is a contradiction, so we cannot reach the last test with KS2[w] defined, hence we can replace
this test with its else branch P, taking into account the collision probability 1/|G| in the probability
of success of an attack. In other words, when the client makes a successful run with the server (the
signature verification succeeds, so the find (4) succeeds), then the server has also used an element
eS coming from the client, so we have taken the then branch of the find (5), so KS2 is not defined.

23

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

Basically, the transformations we did previously allow us to distinguish cases depending on
whether the exponents x and y are used in sessions between the honest client and server, or they are
used in sessions with the adversary. Furthermore, for exponents x and y used in sessions between
the honest client and server, the only usages of x and y left after the previous transformations are of
the form exp(g,x), exp(g,y), and M = exp(g,mult(x,y)). By the CDH assumption, these equality
tests can then be replaced with false.

In particular, in the initial game, IVs (and session keys) are computed by formulas such as IVCC←
iv of hash(hash(hk,concat4(KC,HC,”A”,HC))). By the random oracle model, the call to hash is
replaced with a find that compares concat4(KC,HC,”A”,HC) to the arguments of the previous hash
queries (Step 4). Due to the previous simplifications, it just compares concat4(KC,HC,”A”,HC)
to the hash queries concat4(b1,b2,b3,b4) made by the adversary in oracle OH . In case the same
arguments are found, we compute the IV by truncating the result returned by the previous call to
OH , so in this case, the adversary would have the IV. Otherwise, we generate a fresh IV by returning
iv of hash(r) for a random r. Importantly, the former case is removed by the CDH assumption,
since the comparison b1 = KC is of the form M = exp(g,mult(x,y)), so it is false. Hence, in fact,
we always generate a fresh IV by returning iv of hash(r) for a random r.

11. The function iv of hash truncates its input to the size of its output. Hence, if the argument of
iv of hash is uniformly distributed, then so is its result. We give that information to CryptoVerif
by adding the transformation hash to iv random that transforms an assignment x← iv of hash(r)
when r is a fresh randomly generated value into x R← IV . By command crypto hash to iv random,
we apply this transformation: we replace the creation of IVCC outlined above with the generation
of a random value in IV .

At this point, by command success, CryptoVerif is able to see that IVCC is generated randomly and
never used, and concludes that the secrecy of IVCC is guaranteed.

The secrecy can be proved for the other IV and keys by just repeating this last step for each one of
them (possibly using the truncation functions for MAC or encryption keys instead of iv of hash).

5.5 About the Secrecy of Messages Sent in the Tunnel

In our model, we cannot prove the secrecy of messages sent in the tunnel. This point is actually related
to known weaknesses in SSH with CBC mode encryption (which is still the only required encryption
mode) [7, 3]. CBC mode encryption with chained IVs is not IND-CPA (indistinguishable under chosen
plaintext attacks [6]), and this insecurity also applies to SSH [7]. This problem appears clearly when we
try to do the proof. Because CryptoVerif does not allow encryption and decryption to generate random
values internally or to maintain an internal state, even the interface of encryption in SSH differs from the
one of IND-CPA encryption: in SSH, encryption receives a non-random IV while IND-CPA encryption
receives random coins, and decryption receives an IV while IND-CPA decryption does not. Moreover,
the oracle that decrypts the first block of a packet to get its length leaks the first four bytes of every
packet. In fact, because of properties of CBC mode, using this oracle, one can compute the first four
bytes of the cleartext of any ciphertext block [3, Section 3.2]. This problem is actually related to a real
attack against some SSH implementations [3]: in practice, the length field is not immediately obtained by
the adversary, but can be determined by sending messages block by block until one gets a reply, leading
to the leakage of the cleartext. Such problems would be likely to remain unnoticed with an analysis of
SSH in the symbolic model; that is why it is important to prove the protocol in the computational model.

In order to get a security proof, we could use counter mode encryption as specified in [8] instead
of CBC mode encryption, by relying on its recent formalization in [27]. That would probably require

24

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

extensions of CryptoVerif to keep a mutable counter internally. More generally, the main limitations of
our approach come from limitations of CryptoVerif: it currently cannot handle mutable state, and may
also be unable to prove some protocols secure even if they can be encoded. Additionally, it would also
be interesting to formalize the SSH authentication and connection protocols.

5.6 Implementation

In order to implement the SSH Transport Layer Protocol, we wrote the network code and the crypto-
graphic primitives. The cryptographic primitives are for the most part an interface to Cryptokit. Some
specific algorithm encapsulations used by SSH had to be implemented. Message building and parsing are
also implemented as if they were cryptographic primitives, with a basic specification of their properties:
in particular, parsing is the inverse of message building. The network code sends and receives messages
from the network, and also does some basic non-cryptographic manipulations (for instance, it sends the
identification string directly).

We have verified that our client and server correctly interoperate with OpenSSH. This shows that our
implementation respects the message format and contents of SSH, and that it is a working implementa-
tion. However, we have omitted a few details of the SSH specification for simplicity: key re-exchange,
IGNORE and DISCONNECT messages are not implemented yet. Since our compiler preserves security
as shown in [17], our implementation also satisfies the authentication of the server and the secrecy of
session keys shown on the specification in Sections 5.3 and 5.4 (assuming the cryptographic primitives
are correctly implemented). In order to give an idea on the amount of code this work represents, the
CryptoVerif specification amounts to 331 lines of code, and we generate from it 531 lines of OCaml,
split among multiple files. The manually written code representing the primitives and the authentication
and connection protocols amount to 1124 lines.

The throughput of our implementation when tunneling random data is about 30 MB/s, whereas
OpenSSH using the same algorithms as our implementation (those described in Section 5.1) ramps up
to 90 MB/s on a Dual Core 3.2 GHz. It is slower because our generated code and the cryptographic
primitives in Cryptokit are both slower than their OpenSSH equivalents, but it is still usable. We believe
that the main reason for this slower speed is that our implementation allocates and copies strings when
building messages instead of using a single buffer that would be modified in place. It would theoretically
be possible to implement an optimizing compiler that would avoid string copies as much as possible,
but the generated code would then be more difficult to relate to its CryptoVerif specification, and the
compiler and its proof would be more complicated. The time required by our implementation to do an
handshake (tunnel establishment and user authentication) varies widely depending on how we imple-
ment random number generation: much time may be spent waiting for entropy in the random number
generator. OpenSSH uses the random number generator arc4random which uses an ARC4 pseudo-
random generator regularly seeded with entropy gathered by the kernel, to reduce this waiting time to
a minimum. However, the Cryptokit library does not provide access to arc4random, so one needs to
seed a pseudo-random generator with new entropy at each run of SSH. This entropy can be taken from
/dev/random, which waits until the kernel gathered enough entropy, so this is secure but slow, or from
/dev/urandom, which does not wait, so this is fast, but may not be secure in case there is not enough
entropy available. One could obviously extend Cryptokit to have access to arc4random. Ignoring the
waiting time in the random number generator, the handshake takes about 20 ms, both in our implemen-
tation and in OpenSSH, with an RSA key of 2048 bits and a Diffie-Hellman modulus of 2048 bits. (This
is the user plus system time, measured on an average of 100 runs. To eliminate network delays, all these
measures have been performed with the client and the server running on the same machine.)

25

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

6 Conclusion

We presented a compiler that translates an annotated CryptoVerif specification into an OCaml implemen-
tation. Thanks to this compiler and to CryptoVerif, we can, from a single specification of the protocol,
both prove security properties of the protocol by CryptoVerif and get a runnable implementation of the
protocol using our compiler. We proved in [17] that this compiler preserves security, so the generated
implementation also satisfies the security properties proved on the protocol specification. We applied our
work to the SSH Transport Layer Protocol: we proved the authentication of the server and the secrecy of
the session keys, and we generated an implementation of the protocol that could interact with an existing
implementation of SSH, namely OpenSSH. This work was also an opportunity to extend CryptoVerif so
that it can make case distinctions depending on the order of definitions of variables; this extension was
necessary in order to prove the secrecy of the session keys in SSH.

Our generated implementations do not include countermeasures against side-channel attacks. It
would be interesting to add such countermeasures, or even to have tools to detect certain side-channel
attacks or prove their absence. This is however long-term future work.

Acknowledgments This work was partly supported by the ANR project ProSe (decision ANR 2010-
VERS-004). It was partly done while the authors were at École Normale Supérieure, Paris.

References

[1] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Extracting and verifying cryptographic models
from C protocol code by symbolic execution. In Proc. of the 18th ACM Conference on Computer and
Communications Security (CCS’11), Chicago, IL, USA, pages 331–340. ACM, October 2011.

[2] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Computational verification of C protocol implemen-
tations by symbolic execution. In Proc. of the 19th ACM Conference on Computer and Communications
Security (CCS’12), Raleigh, NC, USA, pages 712–723. ACM, October 2012.

[3] Martin R. Albrecht, Kenny G. Paterson, and Gaven J. Watson. Plaintext recovery attacks against SSH. In
Proc. of the 30th IEEE Symposium on Security and Privacy, Oakland, CA, USA, pages 16–26. IEEE, May
2009.

[4] Matteo Avalle, Alfredo Pironti, Riccardo Sisto, and Davide Pozza. The JavaSPI framework for security
protocol implementation. In Proc. of the 6th International Conference on Availability, Reliability and Security
(ARES’11), Vienna, Austria, pages 746–751. IEEE, August 2011.

[5] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework for computa-
tional soundness proofs. In Proc. of the 16th ACM Conference on Computer and Communications Security
(CCS’09), Chicago, IL, USA, pages 66–78. ACM, November 2009.

[6] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security treatment of symmetric
encryption. In Proc. of the 38th Annual Symposium on Foundations of Computer Science (FOCS’97), Miami
Beach, Florida, pages 394–403. IEEE, October 1997.

[7] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryption in SSH: Provably
fixing the SSH binary packet protocol. In Proc. of the 9th ACM conference on Computer and communications
security (CCS’02), Washington, DC, USA, pages 1–11. ACM, November 2002.

[8] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. The secure shell (SSH) transport layer en-
cryption modes, January 2006. http://www.ietf.org/rfc/rfc4344.txt.

[9] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andy Gordon, and Sergio Maffeis. Refinement
types for secure implementations. ACM Transactions on Programming Languages and Systems (TOPLAS),
33(2), 2011.

26

http://www.ietf.org/rfc/rfc4344.txt

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

[10] Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Eugen Zălinescu. Cryptographically verified
implementations for TLS. In Proc. of the 15th ACM Conference on Computer and Communications Security
(CCS’08), Alexandria, VA, USA, pages 459–468. ACM, October 2008.

[11] Karthikeyan Bhargavan, Cédric Fournet, and Andrew Gordon. Modular verification of security protocol
code by typing. In Proc. of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’10), Madrid, Spain, pages 445–456. ACM, January 2010.

[12] Karthikeyan Bhargavan, Cédric Fournet, Andrew Gordon, and Stephen Tse. Verified interoperable imple-
mentations of security protocols. ACM Transactions on Programming Languages and Systems (TOPLAS),
31(1), 2008.

[13] Bruno Blanchet. Computationally sound mechanized proofs of correspondence assertions. In Proc. of the
20th IEEE Computer Security Symposium (CSF’07), Venice, Italy, pages 97–111. IEEE, July 2007.

[14] Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE Transactions on
Dependable and Secure Computing, 5(4):193–207, October-December 2008.

[15] Bruno Blanchet and David Pointcheval. Automated security proofs with sequences of games. In Proc. of the
26th Annual International Cryptology Conference (CRYPTO’06), Santa Barbara, California, USA, LNCS,
volume 4117, pages 537–554. Springer-Verlag, August 2006.

[16] David Cadé and Bruno Blanchet. From computationally-proved protocol specifications to implementations.
In Proc. of the 7th International Conference on Availability, Reliability and Security (ARES’12), Prague,
Chzech Republic, pages 65–74. IEEE, August 2012.

[17] David Cadé and Bruno Blanchet. Proved generation of implementations from computationally secure proto-
col specifications. In Proc. of the 2nd Conference on Principles of Security and Trust (POST 2013), Rome,
Italy, LNCS, volume 7796, pages 63–82. Springer-Verlag, March 2013.

[18] Sagar Chaki and Anupam Datta. ASPIER: An automated framework for verifying security protocol imple-
mentations. In Proc. of the 22nd IEEE Computer Security Foundations Symposium (CSF’09), Port Jefferson,
NY, USA, pages 172–185. IEEE, July 2009.

[19] François Dupressoir, Andrew D. Gordon, Jan Jürjens, and David A. Naumann. Guiding a general-purpose C
verifier to prove cryptographic protocols. In Proc. of the 24th IEEE Computer Security Foundations Sympo-
sium (CSF’11), Cernay-la-Ville, France, pages 3–17. IEEE, June 2011.

[20] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based cryptographic verification.
In Proc. of the 18th ACM Conference on Computer and Communications Security (CCS’11), Chicago, IL,
USA, pages 341–350. ACM, October 2011.

[21] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic protocol analysis on real C code. In Proc. of
the 6th International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’05),
Paris, France, LNCS, volume 3385, pages 363–379. Springer-Verlag, January 2005.

[22] Jan Jürjens. Security analysis of crypto-based Java programs using automated theorem provers. In Proc. of
the 21th IEEE/ACM International Conference on Automated Software Engineering (ASE’06), Tokyo, Japan,
pages 167–176. IEEE, September 2006.

[23] Tero Kivinen and Mika Kojo. RFC 3526: More modular exponential (MODP) Diffie-Hellman groups for
Internet Key Exchange (IKE), May 2003. http://www.ietf.org/rfc/rfc3526.txt.

[24] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[25] Giuseppe Milicia. χ-spaces: Programming security protocols. In Proc. of the 14th Nordic Workshop on
Programming Theory (NWPT’02), Tallinn, Estonia, November 2002.

[26] Nicholas O’Shea. Using Elyjah to analyse Java implementations of cryptographic protocols. In Proc. of the
Joint Workshop on Foundations of Computer Security, Automated Reasoning for Security Protocol Analysis
and Issues in the Theory of Security (FCS-ARSPA-WITS’08), Pittsburgh, PA, USA, 2008.

[27] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption: A formal security treatment
of SSH-CTR. In Proc. of Eurocrypt 2010, French Riviera, volume 6110, pages 345–361. Springer-Verlag,
May-June 2010. Full version available at http://eprint.iacr.org/2010/095.

[28] Alfredo Pironti and Riccardo Sisto. An experiment in interoperable cryptographic protocol implementation
using automatic code generation. In Proc. of the IEEE Symposium on Computers and Communications

27

http://www.ietf.org/rfc/rfc3526.txt
http://eprint.iacr.org/2010/095

From Computationally-Proved Protocol Specifications to Implementations D. Cadé and B. Blanchet

(ISCC’07), Aveiro, Portugal, pages 839–844. IEEE, July 2007.
[29] Alfredo Pironti and Riccardo Sisto. Provably correct Java implementations of spi calculus security protocols

specifications. Computers and Security, 29(3):302–314, May 2010.
[30] Erik Poll and Aleksy Schubert. Verifying an implementation of SSH. In Proc. of the 17th Annual Workshop

on Information Technologies (WITS’07), Braga, Portugal, March 2007.
[31] Davide Pozza, Riccardo Sisto, and Luca Durante. Spi2Java: Automatic cryptographic protocol Java code

generation from spi calculus. In Proc. of the Advanced Information Networking and Applications, 2004
(AINA’04), Fukuoka, Japan, volume 1, pages 400–405. IEEE, March 2004.

[32] Dawn Song, Adrian Perrig, and Doantam Phan. AGVI—Automatic Generation, Verification, and Implemen-
tation of security protocols. In Proc. of the 13th Conference on Computer Aided Verification (CAV’01), Paris,
France, LNCS, volume 2102, pages 241–245. Springer-Verlag, July 2001.

[33] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bharagavan, and Jean Yang. Se-
cure distributed programming with value-dependent types. In Proc. of the 16th ACM SIGPLAN International
Conference on Functional Programming (ICFP’11), Tokyo, Japan, pages 266–278. ACM, September 2011.

[34] Tatu Ylönen. RFC 4251: The Secure Shell (SSH) Protocol Architecture, January 2006. http://www.ietf.
org/rfc/rfc4251.txt.

[35] Tatu Ylönen. RFC 4252: The Secure Shell (SSH) Authentication Protocol, January 2006. http://www.

ietf.org/rfc/rfc4252.txt.
[36] Tatu Ylönen. RFC 4253: The Secure Shell (SSH) Transport Layer Protocol, January 2006. http://www.

ietf.org/rfc/rfc4253.txt.
[37] Tatu Ylönen. RFC 4254: The Secure Shell (SSH) Connection Protocol, January 2006. http://www.ietf.

org/rfc/rfc4254.txt.

28

http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4254.txt

	Introduction
	Overview of the Approach
	The Specification Language
	Protocol Representation Language
	Annotations for Implementation

	The Translation into OCaml
	An Application: SSH
	Description of the Protocol
	Our Model of SSH in CryptoVerif
	Proof of Authentication of the Server
	Proof of Secrecy of the Session Keys
	About the Secrecy of Messages Sent in the Tunnel
	Implementation

	Conclusion

