
From a Concurrency Course to
Automatic Verification of Process Equivalences

Bruno Blanchet

INRIA, École Normale Supérieure, CNRS
Bruno.Blanchet@ens.fr

February 2011

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 1 / 16

1995-1996: DEA Sémantique, Preuves et Programmation

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 2 / 16

1995-1996: DEA Sémantique, Preuves et Programmation

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 3 / 16

1995-1996: DEA Sémantique, Preuves et Programmation

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 4 / 16

2001-2002: ProVerif: automatic security protocol verifier

Automatic translator

Protocol:
Pi calculus + cryptography

Properties to prove:
Strong secrecy

Horn clauses Derivability queries

Resolution with selection

The property is true Potential attack

(also owes much to Mart́ın Abadi)

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 5 / 16

2005: Automatic verification of observational equivalence
(joint work with Mart́ın Abadi and Cédric Fournet)

ProVerif initially verified only properties on behaviors (traces) of
protocols (secrecy of keys, correspondences).

Many important properties can be formalized as process equivalences,
not as properties on behaviors:

secrecy of a boolean x in P(x): P(true) ≈ P(false)
the process P implements an ideal specification Q: P ≈ Q

Equivalences are usually proved by difficult, long manual proofs.

Much research on this topic, using in particular bisimulation
techniques (e.g., Boreale et al).

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 6 / 16

Equivalences as properties of behaviors (1)

Goal: extend tools designed for proving properties of behaviors (here
ProVerif) to the proof of process equivalences.

We focus on equivalences between processes that differ only by the
terms they contain, e.g., P(true) ≈ P(false).

Many interesting equivalences fall into this category.

Biprocesses represent pairs of processes that differ only by the terms
they contain.

P(true) and P(false) are variants of a biprocess P(diff[true, false]).

The variants give a different interpretation to diff[true, false],
true for the first variant, false for the second one.

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 7 / 16

Equivalences as properties of behaviors (2)

We introduce a new operational semantics for biprocesses:

A biprocess reduces when both variants reduce in the same way and
after reduction, they still differ only by terms (so can be written using
diff).

We establish P(true) ≈ P(false) by reasoning on behaviors of
P(diff[true, false]):

If, for all reachable configurations, both variants reduce in the same
way, then we have equivalence.

(extends to cryptography an idea by Pottier and Simonet)

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 8 / 16

The process calculus

Extension of the pi-calculus with function symbols for cryptographic
primitives.

M,N ::= terms
x , y , z variable
a, b, c , k, s name
f (M1, . . . ,Mn) constructor application

D ::= term evaluations
M term
eval h(D1, . . . ,Dn) function evaluation

P,Q,R ::= processes
M(x).P input
M〈N〉.P output
let x = D in P else Q term evaluation
0 P | Q !P (νa)P

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 9 / 16

Representation of cryptographic primitives

Two possible representations:

When success/failure is visible: destructors with rewrite rules

constructor sencrypt
destructor sdecrypt(sencrypt(x , y), y)→ x

The else clause of the term evaluation is executed when no rewrite
rule of some destructor applies.

When success/failure is not visible: equations

sdecrypt(sencrypt(x , y), y) = x
sencrypt(sdecrypt(x , y), y) = x

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 10 / 16

Semantics

D ⇓ M when the term evaluation D evaluates to M.
Uses rewrite rules of destructors and equations.

≡ transforms processes so that reduction rules can be applied.

Main reduction rules:

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q → P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q → Q (Red Fun 2)
if there is no M such that D ⇓M

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 11 / 16

Observational equivalences and biprocesses

Two processes P and Q are observationally equivalent (P ≈ Q) when the
adversary cannot distinguish them.

A biprocess P is a process with diff.
fst(P) = the process obtained by replacing diff[M,M ′] with M.
snd(P) = the process obtained by replacing diff[M,M ′] with M ′.

P satisfies observational equivalence when fst(P) ≈ snd(P).

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 12 / 16

Semantics of biprocesses

A biprocess reduces when both variants of the process reduce in the same
way.

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q → Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and

there is no M2 such that snd(D)⇓M2

P

snd(Q)snd(P)

fst(P) fst(Q)

Q

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 13 / 16

Proof of observational equivalence using biprocesses

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence
of an adversary), both variants of P reduce in the same way,
then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context
(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions C [P0]→∗ P,
both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 14 / 16

Proof of observational equivalence using biprocesses

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence
of an adversary), both variants of P reduce in the same way,
then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context
(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions C [P0]→∗ P,
both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 14 / 16

Result

Let P0 be a closed biprocess.

Suppose that, for all plain evaluation contexts C and reductions
C [P0]→∗ P,

1 the (Red I/O) rules apply in the same way on both variants.

if P ≡ C ′[N〈M〉.Q | N ′(x).R], then
Σ ` fst(N) = fst(N ′) if and only if Σ ` snd(N) = snd(N ′).

2 the (Red Fun) rules apply in the same way on both variants.

if P ≡ C ′[let x = D in Q else R], then
there exists M1 such that fst(D)⇓M1

if and only if
there exists M2 such that snd(D)⇓M2.

Then P0 satisfies observational equivalence.

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 15 / 16

Conclusion

Thanks Jean-Jacques for all that you taught me!

pi-calculus ⇒ influence on the design of ProVerif
equivalences ⇒ automatic proof of observational equivalences
Application, e.g., to the proof of resistance to dictionary attacks

Implementation and papers at
http://www.proverif.ens.fr/

Bruno Blanchet (INRIA) Concurrency to Verification of Equivalences February 2011 16 / 16

