Dealing with Key Compromise in CryptoVerif

Bruno Blanchet

INRIA Paris
Bruno.Blanchet@inria.fr

March 2023
CryptoVerif is a mechanized prover that:

- works in the computational model.
- generates proofs by sequences of games.
- proves secrecy, correspondence, and indistinguishability properties.
- provides a generic method for specifying properties of cryptographic primitives.
- works for N sessions (polynomial in the security parameter), with an active adversary.
- gives a bound on the probability of an attack (exact security).
- has automatic and interactive modes.
Proof of secrecy, when part of an array is secret, and part is public.

New commands and game transformations:

- **focus** q_1, \ldots, q_m tells CryptoVerif to prove only the properties q_1, \ldots, q_m.
- **success simplify** removes parts of the game such that the adversary cannot break the desired properties when they are executed.
- **guess** the tested session, the value of a variable, which branch of a test is taken.
General strategy for dealing with key compromise

1. Insert events e_i executed when some authentication properties are broken (and the key is not compromised).
2. **focus** on proving $\text{event}(e_i) \Rightarrow \text{false}$.
3. **success simplify** removes the compromise of the key.
4. We prove queries $\text{event}(e_i) \Rightarrow \text{false}$.
5. We go back to before **focus** and prove the other properties (implicitly using the authentication properties already proved).
Applications

- Forward secrecy with respect to the compromise of the pre-shared key in TLS 1.3 and WireGuard.
- PRF-ODH with compromise of Diffie-Hellman exponents, illustrated on Noise NK.
- Forward secrecy for OEKE.
- Grouping compromise scenarios in WireGuard, by guessing which branch is taken.