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Introduction

Analysis of cryptographic protocols:

• Powerful automatic tools for proving properties on behaviors

(traces) of protocols (secrecy of keys, correspondences).

• Many important properties can be formalized as

process equivalences, not as properties on behaviors:

– secrecy of a boolean x in P (x): P (true) ≈ P (false)

– the process P implements an ideal specification Q: P ≈ Q

Equivalences are usually proved by difficult, long manual proofs.

Already much research on this topic, using in particular

sophisticated bisimulation techniques (e.g., Boreale et al).
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Equivalences as properties of behaviors (1)

Goal: extend tools designed for proving properties of behaviors

(here ProVerif) to the proof of process equivalences.

• We focus on equivalences between processes that differ only

by the terms they contain, e.g., P (true) ≈ P (false).

Many interesting equivalences fall into this category.

• We introduce biprocesses to represent pairs of processes that

differ only by the terms they contain.

P (true) and P (false) are variants of a biprocess P (diff[true, false]).

The variants give a different interpretation to diff[true, false],
true for the first variant, false for the second one.
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Equivalences as properties of behaviors (2)

• We introduce a new operational semantics for biprocesses:

A biprocess reduces when both variants reduce in the same

way and after reduction, they still differ only by terms (so can

be written using diff).

• We establish P (true) ≈ P (false) by reasoning on behaviors of

P (diff[true, false]):

If, for all reachable configurations, both variants reduce in the

same way, then we have equivalence.
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Overview of the verification method

Protocol: biprocess
Pi calculus + cryptography

Signature:
Rewrite rules + equations

Resolution with selection

bad is not derivable
Equivalence is true

bad is derivable
Equivalence may be false

Horn clauses

Automatic translator Rewrite rules

Automatic translator
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The process calculus

Extension of the pi-calculus with function symbols for

cryptographic primitives.

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dn) function evaluation

P, Q, R ::= processes
M(x).P input

M〈N〉.P output
let x = D in P else Q term evaluation
0 P | Q !P (νa)P
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Representation of cryptographic primitives

Two possible representations:

• When success/failure is visible: destructors with rewrite rules

constructor sencrypt

destructor sdecrypt(sencrypt(x, y), y) → x
The else clause of the term evaluation is executed when no

rewrite rule of some destructor applies.

• When success/failure is not visible: equations

sdecrypt(sencrypt(x, y), y) = x
sencrypt(sdecrypt(x, y), y) = x

The treatment of equations is one the main contributions of this

work.
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Semantics

D ⇓ M when the term evaluation D evaluates to M .

Uses rewrite rules of destructors and equations.

≡ transforms processes so that reduction rules can be applied.

Main reduction rules:

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q → P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q → Q (Red Fun 2)
if there is no M such that D ⇓M
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Observational equivalences and biprocesses

Two processes P and Q are observationally equivalent (P ≈ Q)

when the adversary cannot distinguish them.

A biprocess P is a process with diff.

fst(P ) = the process obtained by replacing diff[M, M ′] with M .

snd(P ) = the process obtained by replacing diff[M, M ′] with M ′.

P satisfies observational equivalence when fst(P ) ≈ snd(P ).
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Semantics of biprocesses

A biprocess reduces when both variants of the process reduce in

the same way.

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q → P{diff[M1, M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q → Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and

there is no M2 such that snd(D)⇓M2

snd(Q)snd(P )

fst(P ) fst(Q)

QP
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Proof of observational equivalence using biprocesses

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence

of an adversary), both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context

(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions C[P0] →
∗

P , both variants of P reduce in the same way, then P0 sat-

isfies observational equivalence.
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Formalizing the adversary

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence

of an adversary), both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context

(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions

C[P0] →
∗ P , both variants of P reduce in the same way,

then P0 satisfies observational equivalence.
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Formalizing “reduce in the same way”

The biprocess P is uniform when

fst(P ) → Q1 implies P → Q for some biprocess Q with fst(Q) ≡ Q1,

and symmetrically for snd(P ) → Q2.

Q2snd(P )fst(P ) Q1

P Q P Q

≡
snd(Q)

≡
fst(Q)

If, for all plain evaluation contexts C and reductions C[P0] →
∗ P ,

the biprocess P is uniform,

then P0 satisfies observational equivalence.
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Result

Let P0 be a closed biprocess.

Suppose that, for all plain evaluation contexts C, all evaluation

contexts C ′, and all reductions C[P0] →
∗ P ,

1. the (Red I/O) rules apply in the same way on both variants.

if P ≡ C ′[N〈M〉.Q | N ′(x).R], then Σ ` fst(N) = fst(N ′) if and

only if Σ ` snd(N) = snd(N ′),

2. the (Red Fun) rules apply in the same way on both variants.

if P ≡ C ′[let x = D in Q else R], then there exists M1 such that

fst(D)⇓M1 if and only if there exists M2 such that snd(D)⇓M2.

Then P0 satisfies observational equivalence.
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Example: Non-deterministic encryption

Non-deterministic public-key encryption is modeled by an equation:

dec(enc(x, pk(s), a), s) = x

Without knowledge of the decryption key, ciphertexts appear to

be unrelated to the plaintexts.

Ciphertexts are indistinguishable from fresh names:

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[enc(x, pk(s), a), a]〉)

satisfies equivalence.

This equivalence can be proved using the previous result, and

verified automatically by ProVerif.
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Treatment of equations

We automatically transform equations into rewrite rules, much

easier to handle (and already handled in ProVerif),

e.g., transform g^x^y = g^y^x to g^x^y → g^y^x.

We have shown that, for each trace with equations, there is a

corresponding trace with rewrite rules, and conversely.

Then we obtain a result for proving equivalences using rewrite rules

instead of equations.

(See formal details in the paper.)
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Translation into clauses

As in our previous work, we translate the protocol and the adver-

sary into a set of Horn clauses.

The predicates differ in order to translate behaviors of biprocesses

instead of processes:

F ::= facts

att′(p, p′) the attacker has p (resp. p′)

msg′(p1, p2, p′1, p′2) message p2 is sent on channel p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)

nounif(p, p′) p and p′ do not unify modulo Σ

bad the property may be false

Magenta arguments for the first version of the biprocess,

blue ones for the second version.
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Example: some generated clauses

The biprocess of the non-deterministic encryption example:

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[enc(x, pk(s), a), a]〉)

yields the clauses:

msg′(c, pk(s), c, pk(s))

msg′(c′, x, c′, x′) → msg′(c, enc(x, pk(s), a[i, x]), c, a[i, x′])

The first clause corresponds to the output of the public key pk(s).

The second clause corresponds to the other output.

16



Resolution algorithm

Theorem 1 If bad is not a logical consequence of the clauses,

then P0 satisfies observational equivalence.

We determine whether bad is a logical consequence of the clauses

using a resolution-based algorithm.

This algorithm uses domain-specific simplification steps

(for predicate nounif in particular, using unification

modulo the equational theory of Σ).
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Applications

• Weak secrets: We can express that a password is protected

against off-line guessing attacks by an equivalence, and prove

it using our technique (done for 4 versions of EKE).

• Authenticity: We can formalize authenticity as an equivalence

and prove it (for the Wide-Mouth Frog protocol).

• JFK: We can show that the encrypted messages of JFK are

equivalent to fresh names, with our technique plus the property

that observational equivalence is contextual.

Total runtime: 45 s on a Pentium M 1.8 GHz.
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Conclusion

Contributions:

• Fully automatic proof of some process equivalences.

• Treatment of cryptographic primitives represented by

equations.

Implementation and more information at

http://www.di.ens.fr/~blanchet/obsequi/
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