
Automated Verification of Selected

Equivalences for Security Protocols

Bruno Blanchet

CNRS, École Normale Supérieure, Paris

Mart́ın Abadi

University of California, Santa Cruz

Cédric Fournet

Microsoft Research, Cambridge

June 2005

Introduction

Analysis of cryptographic protocols:

• Powerful automatic tools for proving properties on behaviors

(traces) of protocols (secrecy of keys, correspondences).

• Many important properties can be formalized as

process equivalences, not as properties on behaviors:

– secrecy of a boolean x in P (x): P (true) ≈ P (false)

– the process P implements an ideal specification Q: P ≈ Q

Equivalences are usually proved by difficult, long manual proofs.

Already much research on this topic, using in particular

sophisticated bisimulation techniques (e.g., Boreale et al).

1

Equivalences as properties of behaviors (1)

Goal: extend tools designed for proving properties of behaviors

(here ProVerif) to the proof of process equivalences.

• We focus on equivalences between processes that differ only

by the terms they contain, e.g., P (true) ≈ P (false).

Many interesting equivalences fall into this category.

• We introduce biprocesses to represent pairs of processes that

differ only by the terms they contain.

P (true) and P (false) are variants of a biprocess P (diff[true, false]).

The variants give a different interpretation to diff[true, false],
true for the first variant, false for the second one.

2

Equivalences as properties of behaviors (2)

• We introduce a new operational semantics for biprocesses:

A biprocess reduces when both variants reduce in the same

way and after reduction, they still differ only by terms (so can

be written using diff).

• We establish P (true) ≈ P (false) by reasoning on behaviors of

P (diff[true, false]):

If, for all reachable configurations, both variants reduce in the

same way, then we have equivalence.

3

Overview of the verification method

Protocol: biprocess
Pi calculus + cryptography

Signature:
Rewrite rules + equations

Resolution with selection

bad is not derivable
Equivalence is true

bad is derivable
Equivalence may be false

Horn clauses

Automatic translator Rewrite rules

Automatic translator

4

The process calculus

Extension of the pi-calculus with function symbols for

cryptographic primitives.

M, N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . , Mn) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dn) function evaluation

P, Q, R ::= processes
M(x).P input

M〈N〉.P output
let x = D in P else Q term evaluation
0 P | Q !P (νa)P

5

Representation of cryptographic primitives

Two possible representations:

• When success/failure is visible: destructors with rewrite rules

constructor sencrypt

destructor sdecrypt(sencrypt(x, y), y) → x
The else clause of the term evaluation is executed when no

rewrite rule of some destructor applies.

• When success/failure is not visible: equations

sdecrypt(sencrypt(x, y), y) = x
sencrypt(sdecrypt(x, y), y) = x

The treatment of equations is one the main contributions of this

work.

6

Semantics

D ⇓ M when the term evaluation D evaluates to M .

Uses rewrite rules of destructors and equations.

≡ transforms processes so that reduction rules can be applied.

Main reduction rules:

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q → P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q → Q (Red Fun 2)
if there is no M such that D ⇓M

7

Observational equivalences and biprocesses

Two processes P and Q are observationally equivalent (P ≈ Q)

when the adversary cannot distinguish them.

A biprocess P is a process with diff.

fst(P) = the process obtained by replacing diff[M, M ′] with M .

snd(P) = the process obtained by replacing diff[M, M ′] with M ′.

P satisfies observational equivalence when fst(P) ≈ snd(P).

8

Semantics of biprocesses

A biprocess reduces when both variants of the process reduce in

the same way.

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q → P{diff[M1, M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q → Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and

there is no M2 such that snd(D)⇓M2

snd(Q)snd(P)

fst(P) fst(Q)

QP

9

Proof of observational equivalence using biprocesses

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence

of an adversary), both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context

(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions C[P0] →
∗

P , both variants of P reduce in the same way, then P0 sat-

isfies observational equivalence.

10

Formalizing the adversary

Let P0 be a closed biprocess.

If for all configurations P reachable from P0 (in the presence

of an adversary), both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context

(evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions

C[P0] →
∗ P , both variants of P reduce in the same way,

then P0 satisfies observational equivalence.

10-a

Formalizing “reduce in the same way”

The biprocess P is uniform when

fst(P) → Q1 implies P → Q for some biprocess Q with fst(Q) ≡ Q1,

and symmetrically for snd(P) → Q2.

Q2snd(P)fst(P) Q1

P Q P Q

≡
snd(Q)

≡
fst(Q)

If, for all plain evaluation contexts C and reductions C[P0] →
∗ P ,

the biprocess P is uniform,

then P0 satisfies observational equivalence.

11

Result

Let P0 be a closed biprocess.

Suppose that, for all plain evaluation contexts C, all evaluation

contexts C ′, and all reductions C[P0] →
∗ P ,

1. the (Red I/O) rules apply in the same way on both variants.

if P ≡ C ′[N〈M〉.Q | N ′(x).R], then Σ ` fst(N) = fst(N ′) if and

only if Σ ` snd(N) = snd(N ′),

2. the (Red Fun) rules apply in the same way on both variants.

if P ≡ C ′[let x = D in Q else R], then there exists M1 such that

fst(D)⇓M1 if and only if there exists M2 such that snd(D)⇓M2.

Then P0 satisfies observational equivalence.

12

Example: Non-deterministic encryption

Non-deterministic public-key encryption is modeled by an equation:

dec(enc(x, pk(s), a), s) = x

Without knowledge of the decryption key, ciphertexts appear to

be unrelated to the plaintexts.

Ciphertexts are indistinguishable from fresh names:

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[enc(x, pk(s), a), a]〉)

satisfies equivalence.

This equivalence can be proved using the previous result, and

verified automatically by ProVerif.

13

Treatment of equations

We automatically transform equations into rewrite rules, much

easier to handle (and already handled in ProVerif),

e.g., transform g^x^y = g^y^x to g^x^y → g^y^x.

We have shown that, for each trace with equations, there is a

corresponding trace with rewrite rules, and conversely.

Then we obtain a result for proving equivalences using rewrite rules

instead of equations.

(See formal details in the paper.)

14

Translation into clauses

As in our previous work, we translate the protocol and the adver-

sary into a set of Horn clauses.

The predicates differ in order to translate behaviors of biprocesses

instead of processes:

F ::= facts

att′(p, p′) the attacker has p (resp. p′)

msg′(p1, p2, p′1, p′2) message p2 is sent on channel p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)

nounif(p, p′) p and p′ do not unify modulo Σ

bad the property may be false

Magenta arguments for the first version of the biprocess,

blue ones for the second version.

15

Example: some generated clauses

The biprocess of the non-deterministic encryption example:

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[enc(x, pk(s), a), a]〉)

yields the clauses:

msg′(c, pk(s), c, pk(s))

msg′(c′, x, c′, x′) → msg′(c, enc(x, pk(s), a[i, x]), c, a[i, x′])

The first clause corresponds to the output of the public key pk(s).

The second clause corresponds to the other output.

16

Resolution algorithm

Theorem 1 If bad is not a logical consequence of the clauses,

then P0 satisfies observational equivalence.

We determine whether bad is a logical consequence of the clauses

using a resolution-based algorithm.

This algorithm uses domain-specific simplification steps

(for predicate nounif in particular, using unification

modulo the equational theory of Σ).

17

Applications

• Weak secrets: We can express that a password is protected

against off-line guessing attacks by an equivalence, and prove

it using our technique (done for 4 versions of EKE).

• Authenticity: We can formalize authenticity as an equivalence

and prove it (for the Wide-Mouth Frog protocol).

• JFK: We can show that the encrypted messages of JFK are

equivalent to fresh names, with our technique plus the property

that observational equivalence is contextual.

Total runtime: 45 s on a Pentium M 1.8 GHz.

18

Conclusion

Contributions:

• Fully automatic proof of some process equivalences.

• Treatment of cryptographic primitives represented by

equations.

Implementation and more information at

http://www.di.ens.fr/~blanchet/obsequi/

19

